access icon free Power factor improvement of permanent-magnet linear vernier motor by using dual-inverter with hybrid discontinuous PWM

A permanent-magnet linear vernier (PMLV) motor has the advantages of large force and low cost, but it suffers from a low-power factor. This study proposes an instantaneous power control algorithm by using a dual-inverter open-winding (OW) configuration to equivalently improve the PMLV motor power factor. In the proposed algorithm, the active and reactive powers for the motor operation are supplied by the main and compensation inverters, respectively. Therefore, the main inverter dc-link voltage is fully utilised to generate the active power, which is equivalent to the improvement of the motor power factor. Furthermore, a hybrid discontinuous pulse width modulation (HDPWM) scheme is proposed, which takes into consideration the power factor characteristics of the dual-inverter. Compared to the existing OW modulation ones, the proposed HDPWM technique can greatly reduce the dual-inverter loss. The experimental results are carried out to verify the proposed control strategy.

Inspec keywords: pulse width modulation; power control; invertors; linear machines; PWM invertors; power factor; permanent magnet motors; permanent magnet machines; machine control

Other keywords: OW modulation; reactive powers; power factor improvement; hybrid discontinuous pulse; active powers; motor operation; dual-inverter loss; instantaneous power control algorithm; PMLV motor power factor; permanent-magnet linear vernier motor; compensation inverters; power factor characteristics; OW configuration; hybrid discontinuous PWM

Subjects: DC-AC power convertors (invertors); Power and energy control; Control of electric power systems; Linear machines

References

    1. 1)
      • 22. Tcai, A., Shin, H.U., Lee, K.B.: ‘Dc-link capacitor-current ripple reduction in DPWM-based back-to-back converters’, IEEE Trans. Ind. Electron., 2018, 65, (3), pp. 18971907.
    2. 2)
      • 14. Pan, D., Liang, F., Wang, Y., et al: ‘Extension of the operating region of an IPM motor utilizing series compensation’, IEEE Trans. Ind. Appl., 2014, 50, (1), pp. 539548.
    3. 3)
      • 3. Estima, J.O., Cardoso, A.J.M.: ‘Efficiency analysis of drive train topologies applied to electric/hybrid vehicles’, IEEE Trans. Veh. Technol., 2012, 61, (3), pp. 10211031.
    4. 4)
      • 16. Zhao, W., Zhao, P., Xu, D., et al: ‘Hybrid modulation fault-tolerant control of open-end windings linear vernier permanent-magnet motor with floating capacitor inverter’, IEEE Trans. Power Electron., 2019, 34, (3), pp. 25632572.
    5. 5)
      • 24. Bento, A.A.M., Lock, A., da Silva, E.R.C., et al: ‘Hybrid one-cycle control technique for three-phase power factor control’, IET Power Electron., 2017, 10, (1), pp. 17.
    6. 6)
      • 19. Ren, K., Zhang, X., Wang, F., et al: ‘Carrier-based generalised discontinuous pulse-width modulation strategy with flexible neutral-point voltage control and optimal losses for a three-level converter’, IET Power Electron., 2016, 9, (9), pp. 18621872.
    7. 7)
      • 7. Ravi Eswar, K.M., Praveen Kumar, K.V., Vinay Kumar, T.: ‘Modified predictive torque and flux control for open end winding induction motor drive based on ranking method’, IET Electr. Power Appl., 2018, 12, (4), pp. 463473.
    8. 8)
      • 1. Zhou, Y., Qu, R., Shi, C., et al: ‘Analysis of thrust performance of a dual-mover linear vernier machine with horizontal-magnetized PM arrays’, IEEE Trans. Energy Convers., 2018, 33, (4), pp. 21432152.
    9. 9)
      • 6. Zhu, B., Rajashekara, K., Kubo, H.: ‘Comparison between current-based and flux/torque-based model predictive control methods for open-end winding induction motor drives’, IET Electr. Power Appl., 2017, 11, (8), pp. 13971406.
    10. 10)
      • 8. Srinivas, S., Kalaiselvi, J.: ‘Pulse width modulation schemes enabling single DC power source driven dual two-level voltage source inverter with single voltage source inverter switching’, IET Power Electron., 2014, 7, (5), pp. 11811191.
    11. 11)
      • 25. Nguyen, N.V., Nguyen, B.X., Lee, H.H.: ‘A optimized discontinuous PWM method to minimize switching loss for multilevel inverters’, IEEE Trans. Ind. Electron., 2011, 58, (9), pp. 39583966.
    12. 12)
      • 11. Mengoni, M., Amerise, A., Zarri, L., et al: ‘Control scheme for open-ended induction motor drives with a floating capacitor bridge over a wide speed range’, IEEE Trans. Ind. Appl., 2017, 53, (5), pp. 45044514.
    13. 13)
      • 20. Herrera, R.S., Salmerón, P., Kim, H.: ‘Instantaneous reactive power theory applied to active power filter compensation: different approaches, assessment, and experimental results’, IEEE Trans. Ind. Electron., 2008, 55, (1), pp. 184196.
    14. 14)
      • 10. Zhao, W., Chen, Z., Xu, D., et al: ‘Unity power factor fault-tolerant control of linear permanent-magnet vernier motor fed by a floating bridge multilevel inverter with switch fault’, IEEE Trans. Ind. Electron., 2018, 65, (11), pp. 91139123.
    15. 15)
      • 5. Venkata Praveen, K.K., Ravi Eswar, K.M., Vinay Kumar, T.: ‘Improvised predictive torque control strategy for an open end winding induction motor drive fed with four-level inversion using normalised weighted sum model’, IET Power Electron., 2018, 11, (5), pp. 808816.
    16. 16)
      • 23. Prasad, J.S.S., Narayanan, G.: ‘Minimum switching loss pulse width modulation for reduced power conversion loss in reactive power compensators’, IET Power Electron., 2014, 7, (3), pp. 545551.
    17. 17)
      • 21. Hu, J., Nian, H., Hu, B., et al: ‘Direct active and reactive power regulation of DFIG using sliding-mode control approach’, IEEE Trans. Energy Convers., 2010, 25, (4), pp. 10281038.
    18. 18)
      • 13. Ewanchuk, J., Salmon, J., Chapelsky, C.: ‘A algorithm for supply voltage boosting in an open-ended induction machine using a dual inverter system with a floating capacitor bridge’, IEEE Trans. Power Electron., 2013, 28, (3), pp. 13481357.
    19. 19)
      • 4. Sandulescu, A.P., Meinguet, F., Kestelyn, X., et al: ‘Flux-weakening operation of open-end winding drive integrating a cost-effective high-power charger’, IET Electr. Syst. Transp., 2013, 3, (1), pp. 1021.
    20. 20)
      • 18. Lakhimsetty, S., Somasekhar, V.T.: ‘Discontinuous decoupled SVPWM schemes for a four-level open-end winding induction motor drive with waveform symmetries’, IET Power Electron., 2018, 11, (2), pp. 280292.
    21. 21)
      • 12. Toulabi, M.S., Salmon, J., Knight, A.M.: ‘Design, control, and experimental test of an open-winding IPM synchronous motor’, IEEE Trans. Ind. Electron., 2017, 64, (4), pp. 27602769.
    22. 22)
      • 2. Cheng, M., Han, P., Hua, W.: ‘General airgap field modulation theory for electrical machines’, IEEE Trans. Ind. Electron., 2017, 64, (8), pp. 60636074.
    23. 23)
      • 17. Wu, Y., Shafi, M.A., Knight, A.M., et al: ‘Comparison of the effect of continuous and discontinuous PWM schemes on power losses of voltage-sourced inverters for induction motor drives’, IEEE Trans. Power Electron., 2011, 26, (1), pp. 182192.
    24. 24)
      • 15. Sun, D., Zheng, Z., Lin, B., et al: ‘A hybrid PWM-based field weakening strategy for a hybrid-inverter-driven open-winding PMSM system’, IEEE Trans. Energy Convers., 2017, 32, (3), pp. 857865.
    25. 25)
      • 9. Sekhar, K.R., Srinivas, S.: ‘Torque ripple reduction PWMs for a single DC source powered dual-inverter fed open-end winding induction motor drive’, IET Power Electron., 2018, 11, (1), pp. 4351.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2019.0217
Loading

Related content

content/journals/10.1049/iet-pel.2019.0217
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading