access icon free Family of modular, extendable and high gain dc–dc converter with switched inductor and switched capacitor cells

This study presents a family of novel high gain non-isolated hybrid dc–dc converter for dc micro grid application. The proposed family of the converter is developed by employing both inductor-capacitor-inductor (LCL) based switched inductor (SI) and switched capacitor (SC) technique to achieve high voltage gain. Appropriate increase in the number of LCL-based SI cells in the power circuits in order to achieve ultra-high voltage gain allows formulating a generalised structure of the circuit. Incorporation of SI & SC techniques and the structure of the circuit with one stage power transfer ensure high voltage gain at low voltage stress across the switches and diodes. The study includes the principle of operation, steady-state analysis and performance analysis in detail for the converters. Experimental results from the developed hardware prototype of 380 V/250 W validate the adopted concept, design and exemplify that the proposed family of converter operates at a full load efficiency of 94%.

Inspec keywords: power capacitors; DC-DC power convertors; distributed power generation; inductors; switched capacitor networks

Other keywords: voltage 380.0 V; diodes; LCL-based SI cells; ultra-high voltage gain; dc microgrid application; extendable gain dc–dc converter; modular gain dc–dc converter; power circuits; high gain dc–dc converter; low voltage stress; capacitor technique; power 250.0 W; capacitor cells; SI & SC techniques; switched inductor; switches; inductor-capacitor-inductor; novel high gain nonisolated hybrid dc–dc converter

Subjects: Other power apparatus and electric machines; Distributed power generation; Transformers and reactors; DC-DC power convertors

References

    1. 1)
      • 23. Gu, Y., Chen, Y., Zhang, B., et al: ‘High step-up DC–DC converter with active switched LC-network for photovoltaic systems’, IEEE Trans. Energy Convers., 2019, 34, (1), pp. 321329.
    2. 2)
      • 21. Du, S., Wu, B.: ‘A transformerless bipolar modular multilevel DC–DC converter with wide voltage ratios’, IEEE Trans. Power Electron., 2017, 32, (11), pp. 83128321.
    3. 3)
      • 18. Ye, Y., Cheng, K.W.E., Chen, S.: ‘A high step-up PWM DC–DC converter with coupled-inductor and resonant switched-capacitor’, IEEE Trans. Power Electron., 2017, 32, (10), pp. 77397749.
    4. 4)
      • 20. Molavi, N., Farzanehfard, H., Adib, E.: ‘Soft-switched non-isolated high step-up DC–DC converter with reduced voltage stress’, IET Power Electron., 2016, 9, (8), pp. 17111718.
    5. 5)
      • 2. Ou, J., Liu, X., Li, X., et al: ‘Mapping global fossil fuel combustion CO2 emissions at high resolution by integrating nightlight, population density, and traffic network data’, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2016, 9, (4), pp. 16741684.
    6. 6)
      • 4. Rahbar, K., Chai, C.C., Zhang, R.: ‘Energy cooperation optimization in microgrids with renewable energy integration’, IEEE Trans. Smart Grid, 2018, 9, (2), pp. 14821493.
    7. 7)
      • 13. Baddipadiga, B.P., Ferdowsi, M.: ‘A high-voltage-gain dc–dc converter based on modified Dickson charge pump voltage multiplier’, IEEE Trans. Power Electron., 2017, 32, (10), pp. 77077715.
    8. 8)
      • 11. Chen, Y.-T., Liang, R.-H., Lu, Z.-X., et al: ‘Analysis and implementation of a novel high step-up DC–DC converter with low switch voltage stress and reduced diode voltage stress’, IET Power Electron., 2016, 9, (9), pp. 20032012.
    9. 9)
      • 7. Forouzesh, M., Siwakoti, Y.P., Gorji, S.A., et al: ‘Step-up DC–DC converters: a comprehensive review of voltage-boosting techniques, topologies, and applications’, IEEE Trans. Power Electron., 2017, 32, (12), pp. 91439178.
    10. 10)
      • 28. Liu, L., Zhang, S., Luo, F., et al: ‘High-gain boost DC–DC converters: a-LDC converter and S-LDC converter’, Int. Trans. Electr. Energy Syst., 2017, 27, (8), p. e2335.
    11. 11)
      • 12. Zhu, B., Ren, L., Wu, X.: ‘Kind of high step-up dc/dc converter using a novel voltage multiplier cell’, IET Power Electron., 2017, 10, (1), pp. 129133.
    12. 12)
      • 25. Axelrod, B., Berkovich, Y., Ioinovici, A.: ‘Switched-capacitor/switched-inductor structures for getting transformerless hybrid DC–DC PWM converters’, IEEE Trans. Circ. Syst. I Regul. Pap., 2008, 55, (2), pp. 687696.
    13. 13)
      • 24. Amir, A., Che, H.S., Amir, A., et al: ‘Transformerless high gain boost and buck-boost DC–DC converters based on extendable switched capacitor (SC) cell for stand-alone photovoltaic system’, Sol. Energy, 2018, 171, (April), pp. 212222.
    14. 14)
      • 19. Sathyan, S., Suryawanshi, H.M., Singh, B., et al: ‘ZVS–ZCS high voltage gain integrated boost converter for DC microgrid’, IEEE Trans. Ind. Electron., 2016, 63, (11), pp. 68986908.
    15. 15)
      • 10. Vighetti, S., Ferrieux, J.-P., Lembeye, Y.: ‘Optimization and design of a cascaded DC/DC converter devoted to grid-connected photovoltaic systems’, IEEE Trans. Power Electron., 2012, 27, (4), pp. 20182027.
    16. 16)
      • 30. Babaei, E., Mashinchi Maheri, H., Sabahi, M., et al: ‘Extendable nonisolated high gain DC–DC converter based on active–passive inductor cells’, IEEE Trans. Ind. Electron., 2018, 65, (12), pp. 94789487.
    17. 17)
      • 5. Che, L., Zhang, X., Shahidehpour, M., et al: ‘Optimal interconnection planning of community microgrids with renewable energy sources’, IEEE Trans. Smart Grid, 2017, 8, (3), pp. 10541063.
    18. 18)
      • 1. Bose, B.K.: ‘Global energy scenario and impact of power electronics in 21st century’, IEEE Trans. Ind. Electron., 2013, 60, (7), pp. 26382651.
    19. 19)
      • 29. Mashinchi Maheri, H., Babaei, E., Sabahi, M., et al: ‘High step-Up DC–DC converter with minimum output voltage ripple’, IEEE Trans. Ind. Electron., 2017, 64, (5), pp. 35683575.
    20. 20)
      • 3. Alam, M.J.E., Muttaqi, K.M., Sutanto, D.: ‘An approach for online assessment of rooftop solar PV impacts on low-voltage distribution networks’, IEEE Trans. Sustain. Energy, 2014, 5, (2), pp. 663672.
    21. 21)
      • 14. Hsieh, Y.-P., Chen, J.-F., Liang, T.-J., et al: ‘Analysis and implementation of a novel single-switch high step-up DC–DC converter’, IET Power Electron., 2012, 5, (1), pp. 1121.
    22. 22)
      • 16. Siwakoti, Y.P., Blaabjerg, F., Chiang Loh, P.: ‘High step-up trans-inverse (Tx − 1) DC–DC converter for the distributed generation system’, IEEE Trans. Ind. Electron., 2016, 63, (7), pp. 42784291.
    23. 23)
      • 22. Nguyen, M.-K., Duong, T.-D., Lim, Y.-C.: ‘Switched-capacitor-based dual-switch high-boost DC–DC converter’, IEEE Trans. Power Electron., 2018, 33, (5), pp. 41814189.
    24. 24)
      • 27. Tang, Y., Fu, D., Wang, T., et al: ‘Hybrid switched-inductor converters for high step-up conversion’, IEEE Trans. Ind. Electron., 2015, 62, (3), pp. 14801490.
    25. 25)
      • 6. Nejabatkhah, F., Li, Y. W.: ‘Overview of power management strategies of hybrid AC/DC microgrid’, IEEE Trans. Power Electron., 2015, 30, (12), pp. 70727089.
    26. 26)
      • 26. Yang, L.-S., Liang, T.-J., Chen, J.-F.: ‘Transformerless DC–DC converters with high step-up voltage gain’, IEEE Trans. Ind. Electron., 2009, 56, (8), pp. 31443152.
    27. 27)
      • 9. Shi, Y., Yang, X.: ‘Soft switching PWM cascaded three-level combined DC–DC converters with reduced filter size and wide ZVS load range’, IEEE Trans. Power Electron., 2015, 30, (12), pp. 66046616.
    28. 28)
      • 15. Saadat, P., Abbaszadeh, K.: ‘A single-switch high step-Up DC–DC converter based on quadratic boost’, IEEE Trans. Ind. Electron., 2016, 63, (12), pp. 77337742.
    29. 29)
      • 8. Revathi, B.S., Prabhakar, M.: ‘Transformerless high-gain DC–DC converter for microgrids’, IET Power Electron., 2016, 9, (6), pp. 11701179.
    30. 30)
      • 17. Siwakoti, Y.P., Blaabjerg, F.: ‘Single switch nonisolated ultra-step-Up DC–DC converter with an integrated coupled inductor for high boost applications’, IEEE Trans. Power Electron., 2017, 32, (11), pp. 85448558.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2019.0163
Loading

Related content

content/journals/10.1049/iet-pel.2019.0163
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading