Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Design and implementation of an optimal switching controller for uninterruptible power supply inverters using adaptive dynamic programming

In this study, a new approach based on adaptive dynamic programming (ADP) is proposed to control single-phase uninterruptible power supply inverters. The control scheme uses a single function approximator, called critic, to evaluate the optimal cost and determine the optimal switching. After offline training of the critic, which is a function of system states and elapsed time, the resulting optimal weights are used in online control, to get a smooth output AC voltage in a feedback form. Simulations show the desirable performance of this controller with linear and non-linear loads and its relative robustness to parameter uncertainty and disturbances. Furthermore, the proposed controller is upgraded so that the inverter is suitable for single-phase variable frequency drives. Finally, as one of the few studies in the field of ADP, the proposed controllers are implemented on a physical prototype to show the performance in practise.

References

    1. 1)
      • 12. Loxton, R.C., Teo, K.L., Rehbock, V., et al: ‘Optimal switching instants for a switched-capacitor dc/dc power converter’, Automatica, 2009, 45, (4), pp. 973980.
    2. 2)
      • 14. Zhang, X., Wang, Y., Yu, C., et al: ‘Hysteresis model predictive control for high-power grid-connected inverters with output LCL filter’, IEEE Trans. Ind. Electron., 2016, 63, (1), pp. 246256.
    3. 3)
      • 11. Vu, P., Nguyen, Q., Tran, M., et al: ‘Adaptive backstepping approach for dc-side controllers of z-source inverters in grid-tied PV system applications’, IET Power Electron., 2018, 11, (14), pp. 23462354.
    4. 4)
      • 28. Duranay, Z.B., Guldemir, H.: ‘Selective harmonic eliminated v/f speed control of single-phase induction motor’, IET Power Electron., 2017, 11, (3), pp. 477483.
    5. 5)
      • 15. Komurcugil, H., Bayhan, S., Abu Rub, H.: ‘Variable and fixed switching frequency based HCC methods for grid-connected VSI with active damping and zero steady-state error’, IEEE Trans. Ind. Electron., 64, (9), 2017.
    6. 6)
      • 24. Heydari, A.: ‘Optimal scheduling for reference tracking or state regulation using reinforcement learning’, J. Franklin Inst., 2015, 352, (8), pp. 32853303.
    7. 7)
      • 34. AtaKhiabani.: ‘Atakhiabani/single-phase-inverter’, 2019, Available to: https://github.com/AtaKhiabani/Single-phase-inverter.
    8. 8)
      • 22. Kirk, D.E.: ‘Optimal control theory: an introduction’ (Prentice-Hall, Englewood Cliffs, NJ, USA, 2012).
    9. 9)
      • 1. IEC I.: ‘62040–3: uninterruptible power systems (UPS) – part 3: method of specifying the performance and test requirements’, Switzerland: IEC, 2004.
    10. 10)
      • 2. Kukrer, O., Komurcugil, H., Doganalp, A.: ‘A three-level hysteresis function approach to the sliding-mode control of single-phase UPS inverters’, IEEE Trans. Ind. Electron., 2009, 56, (9), pp. 34773486.
    11. 11)
      • 13. Kouro, S., Cortés, P., Vargas, R., et al: ‘Model predictive control – a simple and powerful method to control power converters’, IEEE Trans. Ind. Electron., 2009, 56, (6), pp. 18261838.
    12. 12)
      • 8. Razi, R., Karbasforooshan, M.S., Monfared, M.: ‘Multi-loop control of ups inverter with a plug-in odd-harmonic repetitive controller’, ISA Trans., 2017, 67, pp. 496506.
    13. 13)
      • 5. Mao, H., Yang, X., Chen, Z., et al: ‘A hysteresis current controller for single-phase three-level voltage source inverters’, IEEE Trans. Power Electron., 2012, 27, (7), pp. 33303339.
    14. 14)
      • 21. Sardarmehni, T., Heydari, A.: ‘Suboptimal scheduling in switched systems with continuous-time dynamics: a least squares approach’, IEEE Trans. Neural Netw. Learn. Syst., 29, (6), 2017.
    15. 15)
      • 32. Heydari, A., Balakrishnan, S.N.: ‘Optimal switching between autonomous subsystems’, J. Franklin Inst., 2014, 351, (5), pp. 26752690.
    16. 16)
      • 3. Khajehoddin, S.A., Karimi Ghartemani, M., Jain, P.K., et al: ‘A resonant controller with high structural robustness for fixed-point digital implementations’, IEEE Trans. Power Electron., 2012, 27, (7), pp. 33523362.
    17. 17)
      • 23. Heydari, A.: ‘Revisiting approximate dynamic programming and its convergence’, IEEE Trans. Cybern., 2014, 44, (12), pp. 27332743.
    18. 18)
      • 33. Kröse, B., Krose, B., van der Smagt, P., et al: ‘An introduction to neural networks’, Journal of Computer Science, (The University of Amsterdam, Amsterdam, 1993).
    19. 19)
      • 18. Hasanzadeh, A., Edrington, C., Maghsoudlou, B., et al: ‘Multi-loop linear resonant voltage source inverter controller design for distorted loads using the linear quadratic regulator method’, IET Power Electron., 2012, 5, (6), pp. 841851.
    20. 20)
      • 4. Fujii, T., Yokoyama, T.: ‘FPGA based deadbeat control with disturbance compensator for single phase PWM inverter’. 37th IEEE Power Electronics Specialists Conf. 2006 PESC'06 IEEE, Jeju, Republic of Korea, 2006, pp. 16.
    21. 21)
      • 29. Khiabani, A.G., Heydari, A.: ‘Optimal switching of voltage source inverters using approximate dynamic programming’. ASME 2018 Dynamic Systems and Control Conf. (American Society of Mechanical Engineers), Atlanta, GA, USA, 2018, p. V001T01A006.
    22. 22)
      • 31. Lewis, F.L., Vrabie, D.: ‘Reinforcement learning and adaptive dynamic programming for feedback control’, IEEE Circuits Syst. Mag., 2009, 9, (3), pp. 3250.
    23. 23)
      • 16. Hale, M., Wardi, Y.: ‘Mode scheduling under dwell time constraints in switched-mode systems’. 2014 American Control Conf. IEEE, Portland, OR, USA, 2014, pp. 39543959.
    24. 24)
      • 26. Heydari, A.: ‘Optimal switching of dc-dc power converters using approximate dynamic programming’, IEEE Trans. Neural Netw. Learn. Syst., 2016, 23, pp. 586596, DOI: 10.1109/TNNLS.2016.2635586.
    25. 25)
      • 20. Kamalapurkar, R., Andrews, L., Walters, P., et al: ‘Model-based reinforcement learning for infinite-horizon approximate optimal tracking’, IEEE Trans. Neural Netw. Learn. Syst., 2017, 28, (3), pp. 753758.
    26. 26)
      • 27. Vaez Zadeh, S., Zahedi, B.: ‘Modeling and analysis of variable speed single phase induction motors with iron loss’, Energy Convers. Manage., 2009, 50, (11), pp. 27472753.
    27. 27)
      • 19. Kiumarsi, B., Vamvoudakis, K.G., Modares, H., et al: ‘Optimal and autonomous control using reinforcement learning: a survey’, IEEE Trans. Neural Netw. Learn. Syst., 29, (6), 2017.
    28. 28)
      • 36. Abrishamifar, A., Ahmad, A., Mohamadian, M.: ‘Fixed switching frequency sliding mode control for single-phase unipolar inverters’, IEEE Trans. Power Electron., 2012, 27, (5), pp. 25072514.
    29. 29)
      • 25. Vamvoudakis, K.G., Hespanha, J.P.: ‘Online optimal operation of parallel voltage source inverters using partial information’, IEEE Trans. Ind. Electron., 64, (5), 2016.
    30. 30)
      • 10. Li, B., Huang, S., Chen, X., et al: ‘Enhanced dq current control for single-phase voltage-source inverters’, IET Power Electron., 11, (9), 2018.
    31. 31)
      • 35. Rymarski, Z., Bernacki, K.: ‘Different approaches to modelling single-phase voltage source inverters for uninterruptible power supply systems’, IET Power Electron., 2016, 9, (7), pp. 15131520.
    32. 32)
      • 37. Monfared, M.: ‘A simplified control strategy for single-phase ups inverters’, Bull. Pol. Acad. Sci. Tech. Sci., 2014, 62, (2), pp. 367373.
    33. 33)
      • 7. Evran, F.: ‘Plug-in repetitive control of single-phase grid-connected inverter for ac module applications’, IET Power Electron., 2017, 10, (1), pp. 4758.
    34. 34)
      • 9. Xu, S., Wang, J., Xu, J.: ‘A current decoupling parallel control strategy of single-phase inverter with voltage and current dual closed-loop feedback’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 13061313.
    35. 35)
      • 6. Cortajarena, J.A., Barambones, O., Alkorta, P., et al: ‘Sliding mode control of grid-tied single-phase inverter in a photovoltaic MPPT application’, Sol. Energy, 2017, 155, pp. 793804.
    36. 36)
      • 30. Carballo, R.E., Botterón, F., Oggier, G.G., et al: ‘Design approach of discrete-time resonant controllers for uninterruptible power supply applications through frequency response analysis’, IET Power Electron., 2016, 9, (15), pp. 28712879.
    37. 37)
      • 17. Ufnalski, B., Kaszewski, A., Grzesiak, L.M.: ‘Particle swarm optimization of the multioscillatory LQR for a three-phase four-wire voltage-source inverter with an output filter’, IEEE Trans. Ind. Electron., 2015, 62, (1), pp. 484493.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2019.0159
Loading

Related content

content/journals/10.1049/iet-pel.2019.0159
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address