access icon free Control strategy of wind energy conversion system based on H-MMC under asymmetrical grid faults

This study proposes a topology of wind energy conversion system based on hexagonal modular multilevel converter (H-MMC), which can connect the wind turbine and the AC grid with one stage conversion. It has the advantages of low power losses, low ripple of capacitor voltage and transformer-less grid connection. The operation principle of the proposed topology is analysed in detail. Then, the positive and negative sequence control method is proposed to eliminate the second harmonics in the output power of H-MMC under asymmetrical grid faults. The double proportional resonant (PR) controller is proposed to track arm current references without steady error. The effectiveness of the proposed topology and its control method are verified by simulations and hardware in loop tests.

Inspec keywords: power generation faults; power grids; HVDC power convertors; voltage-source convertors; wind power plants; power generation control; power conversion harmonics; wind turbines; power capacitors

Other keywords: double proportional resonant controller; low ripple; hexagonal modular multilevel converter; wind turbine; positive sequence control method; low power losses; control strategy; capacitor voltage; asymmetrical grid faults; transformer-less grid connection; H-MMC; wind energy conversion system; AC grid; negative sequence control method; one stage conversion

Subjects: Power supply quality and harmonics; AC-DC power convertors (rectifiers); Wind power plants; Control of electric power systems; Other power apparatus and electric machines; DC-AC power convertors (invertors)

References

    1. 1)
      • 29. Nian, H., Cheng, P., Zhu, Z.Q.: ‘Coordinated direct power control of DFIG system without phase-locked loop under unbalanced grid voltage conditions’, IEEE Trans. Power Electron., 2016, 31, (4), pp. 29052918.
    2. 2)
      • 22. Ilves, K., Bessegato, L., Norrga, S.: ‘Comparison of cascaded multilevel converter topologies for AC/AC conversion’. Int. Power Electronics Conf. IEEE, Hiroshima, Japan, May 2014, pp. 10871094.
    3. 3)
      • 30. Tan, P.C., Loh, P.C., Holmes, D.G.: ‘High-performance harmonic extraction algorithm for a 25 kV traction power quality conditioner’, IEE Proc.- Electr. Power Appl., 2004, 151, (5), pp. 5055512.
    4. 4)
      • 16. Karwatzki, D., Mertens, A.: ‘Generalized control approach for a class of modular multilevel converter topologies’, IEEE Trans. Power Electron., 2018, 33, (4), pp. 28882900.
    5. 5)
      • 27. Phan, V., Lee, H.: ‘Performance enhancement of stand-alone DFIG systems with control of rotor and load side converters using resonant controllers’, IEEE Trans. Ind. Appl., 2012, 48, (1), pp. 199210.
    6. 6)
      • 12. Debnath, S., Saeedifard, M.: ‘A new hybrid modular multilevel converter for grid connection of large wind turbines’, IEEE Trans. Sustain. Energy, 2013, 4, (4), pp. 10511064.
    7. 7)
      • 11. Li, B., Zhang, Y., Wang, G., et al: ‘A modified modular multilevel converter with reduced capacitor voltage fluctuation’, IEEE Trans. Ind. Electron., 2015, 62, (10), pp. 61086119.
    8. 8)
      • 28. Calle-Prado, A., Alepuz, S., Bordonau, J., et al: ‘Model predictive current control of grid-connected neutral-point-clamped converters to meet low-voltage ride-through requirements’, IEEE Trans. Ind. Electron., 2015, 62, (3), pp. 15031514.
    9. 9)
      • 9. Liu, Z., Wang, Y., Tan, G., et al: ‘A novel SVPWM algorithm for five-level active neutral-point-clamped converter’, IEEE Trans. Power Electron., 2016, 31, (5), pp. 38593866.
    10. 10)
      • 26. Shao, S., Long, T., Abdi, E., et al: ‘Dynamic control of the brushless doubly fed induction generator under unbalanced operation’, IEEE Trans. Ind. Electron., 2013, 60, (6), pp. 24652476.
    11. 11)
      • 23. Baruschka, L., Mertens, A.: ‘A new three-phase AC/AC modular multilevel converter with six branches in hexagonal configuration’, IEEE Trans. Ind. Appl., 2013, 49, (3), pp. 14001410.
    12. 12)
      • 15. Diaz, M., Cárdenas, R., Espinoza, M., et al: ‘Modelling and control of the modular multilevel matrix converter and its application to wind energy conversion systems’. IECON 2016–42nd Annual Conf. of the IEEE Industrial Electronics Society, Florence, Italy, October 2016, pp. 50525057.
    13. 13)
      • 4. Zhu, Z.Q., Hu, J.: ‘Electrical machines and power-electronic systems for high-power wind energy generation applications: part II-power electronics and control systems’, COMPEL-Int. J. Comput. Math. Electric. Electron. Eng., 2013, 32, (1), pp. 3471.
    14. 14)
      • 18. Jafarishiadeh, M., Ahmadi, R.: ‘Two-and-one set of arms MMC-based multilevel converter with reduced submodule counts’. Transportation Electrification Conf. and Expo (ITEC). IEEE, Long Beach, CA, June 2018, pp. 779782.
    15. 15)
      • 13. Wang, M., Hu, Y., Zhao, W., et al: ‘Application of modular multilevel converter in medium voltage high power permanent magnet synchronous generator wind energy conversion systems’, IET Renew. Power Gener., 2016, 10, (6), pp. 824833.
    16. 16)
      • 5. Ma, K., Blaabjerg, F.: ‘Modulation methods for neutral-point-clamped wind power converter achieving loss and thermal redistribution under low-voltage ride-through’, IEEE Trans. Ind. Electron., 2014, 61, (2), pp. 835845.
    17. 17)
      • 25. Baruschka, L., Karwatzki, D., von Hofen, M., et al: ‘Low-speed drive operation of the modular multilevel converter hexverter down to zero frequency’. Energy Conversion Congress and Exposition (ECCE). IEEE, Pittsburgh, PA, September 2014, pp. 54075414.
    18. 18)
      • 24. Zhang, C., Jiang, D., Zhang, X., et al: ‘The study of a battery energy storage system based on the hexagonal modular multilevel direct AC/AC converter (hexverter)’, IEEE. Access., 2018, 6, pp. 4334343355.
    19. 19)
      • 19. Fatemi, A., Azizi, M., Rahmani, K., et al: ‘A novel reduced switch count multilevel AC/AC converter’. Iranian Conf. on Electrical Engineering. IEEE, Tehran, Iran, May 2011, pp. 15.
    20. 20)
      • 2. Yaramasu, V., Wu, B., Sen, P.C., et al: ‘High-power wind energy conversion systems: state-of-the-art and emerging technologies’, Proc. IEEE, 2015, 103, (5), pp. 740788.
    21. 21)
      • 6. Blaabjerg, F., Liserre, M., Ma, K.: ‘Power electronics converters for wind turbine systems’, IEEE Trans. Ind. Appl., 2012, 48, (2), pp. 708719.
    22. 22)
      • 20. Baruschka, L., Mertens, A.:‘A new 3-phase AC/AC modular multilevel converter with six branches in hexagonal configuration’. Energy Conversion Congress and Exposition. IEEE, Phoenix, AZ, USA, September 2011, pp. 40054012.
    23. 23)
      • 10. Morais, E., Lima, F., Branco, C.: ‘Comparison between three-phase structures of two and three branches with ancillary services capabilities in type-3 wind turbines: flying capacitor topology’. IEEE Int. Symp. on Power Electronics for Distributed Generation Systems. IEEE, Florianopolis, Brazil, April 2017, pp. 18.
    24. 24)
      • 3. Yuan, X.: ‘A set of multilevel modular medium-voltage high power converters for 10-MW wind turbines’, IEEE Trans. Sustain. Energy, 2014, 5, (2), pp. 524534.
    25. 25)
      • 17. Elserougi, A., Ahmed, S., Massoud, A.: ‘Operation of three-phase modular multilevel converter (MMC) with reduced number of arms’. Int. Conf. on Industrial Technology (ICIT). IEEE, Taipei, Taiwan, March 2016, pp. 355359.
    26. 26)
      • 14. Thitichaiworakorn, N., Hagiwara, M., Akagi, H.: ‘A medium-voltage large wind turbine generation system using an AC/AC modular multilevel cascade converter’, IEEE J. Emerg. Sel. Top. Power Electron., 2016, 4, (2), pp. 534546.
    27. 27)
      • 1. Yaramasu, V., Dekka, A., Durán, M.J., et al: ‘PMSG-based wind energy conversion systems: survey on power converters and controls’. IET Electric. Power Appl., 2017, 11, (6), pp. 956968.
    28. 28)
      • 8. Pulikanti, S. R., Muttaqi, K., Suntanto, D.: ‘Control of five-level flying capacitor based active-neutral-point-clamped converter for grid connected wind energy applications’. Industry Applications Society Meeting. IEEE, Las Vegas, NV, USA, October 2012, pp. 19.
    29. 29)
      • 21. Karwatzki, D., Baruschka, L., Mertens, A.: ‘Survey on the hexverter topology-A modular multilevel AC/AC converter’. Int. Conf. on Power Electronics and ECCE Asia. IEEE, Seoul, South Korea, June 2015, pp. 10751082.
    30. 30)
      • 7. Senturk, O.S., Helle, L., Munk-Nielsen, S., et al: ‘Power capability investigation based on electrothermal models of press-pack IGBT three-level NPC and ANPC VSCs for multimegawatt wind turbines’, IEEE Trans. Power Electron., 2012, 27, (7), pp. 31953206.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2019.0108
Loading

Related content

content/journals/10.1049/iet-pel.2019.0108
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading