Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Device-level modelling and FPGA-based real-time simulation of the power electronic system in fuel cell electric vehicle

Power electronic converters are essential components in the fuel cell electric vehicle (FCEV) powertrain, which precisely control the power output of the fuel cell stack, the charging and discharging process of the battery, and the operation of the traction motor. The hardware-in-the-loop (HIL) simulation plays an important role in the rapid validation of power converters in their early development stages. In this study, a device-level model of the power converters in FCEV powertrain is developed for the FPGA-based real-time simulation. By fulfilling the circuit topology partitioning and the switch model partitioning, the FCEV power electronic system can be simulated with sub-microsecond time-step while producing the detailed switching waveforms with 5 ns resolution. Therefore, the device electrical stress, and the switching power losses can be evaluated in real time. Furthermore, the electro-thermal converter model is developed accordingly, which makes it possible to evaluate the IGBT/Diode thermal behaviour in the HIL simulation. In this study, the FPGA hardware is designed with the NI LABVIEW FPGA module and implemented on the NI-7975R FLEXRIO FPGA board. The accuracy of the FPGA-based simulation results is evaluated by the results from offline simulation tools. The effectiveness of the proposed model is then validated by the controller HIL experiments.

References

    1. 1)
      • 22. Xue, P., Fu, G., Zhang, D.: ‘Modeling inductive switching characteristics of high-speed buffer layer IGBT’, IEEE Trans. Power Electron., 2017, 32, (4), pp. 30753087.
    2. 2)
      • 18. Ould-Bachir, T., Blanchette, H.F., Al-Haddad, K.: ‘A network tearing technique for FPGA-based real-time simulation of power converters’, IEEE Trans. Ind. Electron., 2015, 62, (6), pp. 34093418.
    3. 3)
      • 9. Shen, Z., Dinavahi, V.: ‘Real-time device-level transient electrothermal model for modular multilevel converter on FPGA’, IEEE Trans. Power Electron., 2016, 31, (9), pp. 61556168.
    4. 4)
      • 26. Ji, S., Lu, T., Zhao, Z, et al: ‘Modelling of high voltage IGBT with easy parameter extraction’. Proc. 7th Int. Power Electronics and Motion Control Conf., Harbin, 2012, pp. 15111515.
    5. 5)
      • 23. ‘HEXFET Databook’Power MOSFET application and product DATA’ (International Rectifier, CA, USA, 1982, 1st edn.), pp. A65-A78.
    6. 6)
      • 24. Lin, N., Dinavahi, V. ‘Exact nonlinear micro-modeling for fine-grained parallel EMT simulation of MTDC grid interaction with wind farm’, IEEE Trans. Ind. Electron., 2019, 66, (8), pp. 64276436.
    7. 7)
      • 21. Rashid, M.H.: ‘Power electronics handbook’ (Butterworth, London, UK, 2010, 3rd edn.).
    8. 8)
      • 8. Lin, N., Shi, B., Dinavahi, V.: ‘Non-linear behavioural modelling of device-level transients for complex power electronic converter circuit hardware realisation on FPGA’, IET Power Electron., 2018, 11, (9), pp. 15661574.
    9. 9)
      • 6. Liang, T., Dinavahi, V.: ‘Real-time device-level simulation of MMC-based MVDC traction power system on MPSoC’, IEEE Trans. Transp. Electrif., 2018, 4, (2), pp. 626641.
    10. 10)
      • 16. Grégoire, L., Blanchette, H.F., Bélanger, J., et al: ‘Real-time simulation-based multisolver decoupling technique for complex power-electronics circuits’, IEEE Trans. Power Deliv., 2016, 31, (5), pp. 23132321.
    11. 11)
      • 10. Lin, N., Dinavahi, V.: ‘Dynamic electro-magnetic-thermal modeling of MMC-based DC–DC converter for real-time simulation of MTDC grid’, IEEE Trans. Power Deliv., 2018, 33, (3), pp. 13371347.
    12. 12)
      • 11. Dufour, C., Belanger, J.: ‘Real-time simulation of fuel cell hybrid electric vehicles’. Proc. Int. Symp. on Power Electronics, Electrical Drives, Automation and Motion, Taormina, 2006, pp. 930993.
    13. 13)
      • 13. Ma, R., Liu, C., Zheng, Z., et al: ‘CPU-FPGA based real-time simulation of fuel cell electric vehicle’, Energy Convers. Manage., 2018, 174, pp. 983997.
    14. 14)
      • 3. Tremblay, O., Fortin-Blanchette, H., Gagnon, R., et al: ‘Contribution to stability analysis of power hardware-in-the-loop simulators’, IET Gener. Transm. Distrib., 2017, 11, (12), pp. 30733079.
    15. 15)
      • 5. Kelkar, S., Wunderlich, R.W., Hitchcock, L.: ‘Device level simulation for power converters’. Proc. IEEE Applied Power Electronics Conf. and Exposition (APEC), Baltimore, MD, USA, 1989, pp. 335343.
    16. 16)
      • 2. Kitamoto, R., Sato, S., Nakamura, H., et al: ‘Development of fuel cell boost converter using coupled- inductor for new FCV’. SAE Technical Paper 2017-01-1224, 2017, doi: 10.4271/2017-01-1224.
    17. 17)
      • 15. Bai, H., Liu, C., Rathore, A.K., et al: ‘An FPGA-based IGBT behavioral model with high transient resolution for real-time simulation of power electronic circuits’, IEEE Trans. Ind. Electron., 2019, 66, (8), pp. 65816591.
    18. 18)
      • 12. Bai, H., Luo, H., Liu, C., et al: ‘FPGA-based real-time simulation of floating interleaved boost converter for FCEV powertrain’. Proc. IEEE Transportation Electrification Conf. Expo, Long Beach, CA, 2018, pp. 9095.
    19. 19)
      • 7. Wang, W., Shen, Z., Dinavahi, V.: ‘Physics-based device-level power electronic circuit hardware emulation on FPGA’, IEEE Trans. Ind. Inf., 2014, 10, (4), pp. 21662179.
    20. 20)
      • 4. Hadizadeh, A., Hashemi, M., Labbaf, M., et al: ‘A matrix-inversion technique for FPGA-based real-time EMT simulation of power converters’, IEEE Trans. Ind. Electron., 2019, 66, (2), pp. 12241234.
    21. 21)
      • 14. Herrera, L., Li, C., Yao, X., et al: ‘FPGA-based detailed real-time simulation of power converters and electric machines for EV HIL applications’, IEEE Trans. Ind. Appl., 2015, 51, (2), pp. 17021712.
    22. 22)
      • 19. ‘Saber® Model Architect Tool User Guide’, (Synopsys Inc., Mountain View, CA, USA, 2009).
    23. 23)
      • 25. Hsu, J.T., Ngo, K.D. T.: ‘Behavioral modeling of the IGBT using the Hammerstein configuration’, IEEE Trans. Power Electron., 1996, 11, (6), pp. 746754.
    24. 24)
      • 1. Hasuka, Y., Sekine, H., Katano, K., et al: ‘Development of boost converter for MIRAI’. SAE Technical Paper 2015-01-1170, 2015, doi: 10.4271/2015-01-1170.
    25. 25)
      • 20. Courtay, A.: ‘mtMAST power diode and thyristor models including automatic parameter extraction’. SABER User Group Meeting, Brighton, UK, September 1995, pp. 110.
    26. 26)
      • 17. Roshandel Tavana, N., Dinavahi, V.: ‘A general framework for FPGA-based real-time emulation of electrical machines for HIL applications’, IEEE Trans. Ind. Electron., 2015, 62, (4), pp. 20412053.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2019.0101
Loading

Related content

content/journals/10.1049/iet-pel.2019.0101
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address