Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Modified virtual inertia control method of VSG strategy with improved transient response and power-supporting capability

Virtual synchronous generator (VSG) controlled grid-tied converters could increase power overshoot and oscillation if real power reference disturbance (PRD) occurs. Existing VSG methods can mitigate the power oscillations, but they may reduce the supporting capability of grid contingency. To cope with the issue, a modified virtual inertia control method of VSG strategy is proposed. The proposed modified VSG method introduces two frequencies of point of common coupling into the virtual inertia control. The estimated frequency is used to mitigate the power oscillations and the measured frequency aims to provide extra power supporting. The formulated parameters design principles are given according to the transient characteristics. Stability analysis of power and frequency response is carried out to evaluate the proposed method. Besides, the transient power and frequency response of the PRD case and grid-frequency disturbance (GFD) case are studied. The power overshoot of the proposed modified VSG method decreases by 52.5% under the PRD case and the power support peak increases by 34.3% under the GFD case. Experimental results show that the transient performance of the proposed modified VSG controlled grid-tied converters is improved.

References

    1. 1)
      • 6. Fang, J., Li, H., Tang, Y., et al: ‘On the inertia of future more-electronics power systems’, IEEE J. Emerging Sel. Topics Power Electron., 2018, (early access, doi: 10.1109/JESTPE.2018.2877766).
    2. 2)
      • 27. Asrari, A., Mustafa, M., Ansari, M., et al: ‘Impedance analysis of virtual synchronous generator-based vector controlled converters for weak AC grid integration’, IEEE Trans. Sustain. Energy, 2019, 10, (3), pp. 14811490.
    3. 3)
      • 30. Wen, B., Boroyevich, D., Burgos, R., et al: ‘Analysis of D-Q small-signal impedance of grid-tied inverters’, IEEE Trans. Power Electron., 2016, 31, (1), pp. 675687.
    4. 4)
      • 25. Pérez, J.R., Suul, J.A., D'Arco, S., et al: ‘Virtual synchronous machine control of VSC HVDC for power system oscillation damping’. IECON 2018-44th Annual Conf. of the IEEE Industrial Electronics Society, Washington D.C., United States of America, October 2018, pp. 60266031.
    5. 5)
      • 23. Fang, J., Zhang, R., Li, H., et al: ‘Frequency derivative-based inertia enhancement by grid-connected power converters with a frequency-locked-loop’, IEEE Trans. Smart Grid, 2018, (early access, doi: 10.1109/TSG.2018.2871085).
    6. 6)
      • 20. Suul, J.A., D'Arco, S., Guidi, G.: ‘Virtual synchronous machine-based control of a single-phase bi-directional battery charger for providing vehicle-to-grid services’, IEEE Trans. Ind. Appl., 2016, 52, (4), pp. 32343244.
    7. 7)
      • 1. Rocabert, J., Luna, A., Blaabjerg, F., et al: ‘Control of power converters in AC microgrids’, IEEE Trans. Power Electron., 2012, 27, (11), pp. 47344749.
    8. 8)
      • 15. Alipoor, J., Miura, Y., Ise, T.: ‘Power system stabilization using virtual synchronous generator with alternating moment of inertia’, IEEE J. Emerging Sel. Topics Power Electron., 2015, 3, (2), pp. 451458.
    9. 9)
      • 12. D'Arco, S., Suul, J.A.: ‘Equivalence of virtual synchronous machines and frequency-droops for converter-based microgrids’, IEEE Trans. Smart Grid, 2014, 5, (1), pp. 394395.
    10. 10)
      • 9. Chen, Y., Hesse, R., Turschner, D., et al: ‘Improving the grid power quality using virtual synchronous machines’. Int. Conf. on Power Engineering, Energy and Electrical Drives, Malaga, Spain, May 2011, pp. 16.
    11. 11)
      • 22. Kayikçi, M., Milanovic, J. V.: ‘Dynamic contribution of DFIG-based wind plants to system frequency disturbances’, IEEE Trans. Power Syst., 2009, 24, (2), pp. 859867.
    12. 12)
      • 21. Huang, L., Xin, H., Wang, Z.: ‘Damping low-frequency oscillations through VSC-HVDC stations operated as virtual synchronous machines’, IEEE Trans. Power Electron., 2019, 34, (6), pp. 58035818.
    13. 13)
      • 3. Hirase, Y., Sugimoto, K., Sakimoto, K., et al: ‘Analysis of resonance in microgrids and effects of system frequency stabilization using a virtual synchronous generator’, IEEE J. Emerging Sel. Topics Power Electron., 2016, 4, (4), pp. 12871298.
    14. 14)
      • 5. Hirase, Y., Abe, K., Sugimoto, K., et al: ‘A novel control approach for virtual synchronous generators to suppress frequency and voltage fluctuations in microgrids’, Appl. Energy, 2018, 210, pp. 699710.
    15. 15)
      • 19. Soni, N., Doolla, S., Chandorkar, M.C.: ‘Inertia design methods for islanded microgrids having static and rotating energy sources’, IEEE Trans. Ind. Appl., 2016, 52, (6), pp. 51655174.
    16. 16)
      • 14. Liu, J., Miura, Y., Ise, T.: ‘Comparison of dynamic characteristics between virtual synchronous generator and droop control in inverter-based distributed generators’, IEEE Trans. Power Electron., 2016, 31, (5), pp. 36003611.
    17. 17)
      • 4. Wu, W., Chen, Y., Zhou, L., et al: ‘Sequence impedance modelling and stability comparative analysis of voltage-controlled VSGs and current-controlled VSGs’, IEEE Trans. Ind. Electron., 2019, 66, (8), pp. 64606472.
    18. 18)
      • 8. Visscher, K., De Haan, S.W.H.: ‘Virtual synchronous machines (VSG's) for frequency stabilisation in future grids with a significant share of decentralized generation’. CIRED Seminar 2008: Smart Grids for Distribution, Frankfurt, Germany, August 2008, pp. 14.
    19. 19)
      • 29. Ali, Z., Christofides, N.G., Hadjidemetriou, L., et al: ‘Three-phase phase-locked loop synchronization algorithms for grid-connected renewable energy systems: A review’, Renew. Sustain. Energy Rev., 2018, 90, pp. 434452.
    20. 20)
      • 24. Xiong, L., Li, P., Wu, F., et al: ‘Stability enhancement of power systems with high DFIG-wind turbine penetration via virtual inertia planning’, IEEE Trans. Power Syst., 2019, 34, (2), pp. 13521361.
    21. 21)
      • 10. Zhong, Q., Weiss, G.: ‘Synchronverters: inverters that mimic synchronous generators’, IEEE Trans. Ind. Electron., 2011, 58, (4), pp. 12591267.
    22. 22)
      • 7. Driesen, J., Visscher, K.: ‘Virtual synchronous generators’. IEEE Power and Energy Society General Meeting, Pittsburgh, PA, USA, August 2008, pp. 13231325.
    23. 23)
      • 16. Li, D., Zhu, Q., Lin, S., et al: ‘A self-adaptive inertia and damping combination control of VSG to support frequency stability’, IEEE Trans. Energy Convers., 2017, 32, (1), pp. 397398.
    24. 24)
      • 31. Xin, Z., Wang, X., Loh, P.C., et al: ‘Realization of digital differentiator using generalized integrator for power converters’, IEEE Trans. Power Electron., 2015, 30, (12), pp. 65206523.
    25. 25)
      • 26. Kerdphol, T., Rahman, F.S., Watanabe, M., et al: ‘Enhanced virtual inertia control based on derivative technique to emulate simultaneous inertia and damping properties for microgrid frequency regulation’, IEEE. Access., 2019, 7, pp. 1442214433.
    26. 26)
      • 2. Han, Y., Li, H., Shen, P., et al: ‘Review of active and reactive power sharing strategies in hierarchical controlled microgrids’, IEEE Trans. Power Electron., 2017, 32, (3), pp. 24272451.
    27. 27)
      • 18. Soni, N., Doolla, S., Chandorkar, M.C.: ‘Improvement of transient response in microgrids using virtual inertia’, IEEE Trans. Power Deliv., 2013, 28, (3), pp. 18301838.
    28. 28)
      • 17. Wang, F., Zhang, L., Feng, X., et al: ‘An adaptive control strategy for virtual synchronous generator’, IEEE Trans. Ind. Appl., 2018, 54, (5), pp. 51245133.
    29. 29)
      • 28. Zou, C., Liu, B., Duan, S., et al: ‘Stationary frame equivalent model of proportional-integral controller in dq synchronous frame’, IEEE Trans. Power Electron., 2014, 29, (9), pp. 44614465.
    30. 30)
      • 13. Meng, X., Liu, J., Liu, Z.: ‘A generalized droop control for grid-supporting inverter based on comparison between traditional droop control and virtual synchronous generator control’, IEEE Trans. Power Electron., 2019, 34, (6), pp. 54165438.
    31. 31)
      • 11. Chen, Y., Hesse, R., Turschner, D., et al: ‘Comparison of methods for implementing virtual synchronous machine on inverters’. Int. Conf. on Renewable Energies and Power Quality, Santiago de Compostela, Spain, March 2012, pp. 16.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2019.0099
Loading

Related content

content/journals/10.1049/iet-pel.2019.0099
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address