Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Comprehensive sharing control strategy for input-series output-parallel connected modular DC–DC converters

The systems consisting of multiple DC–DC converters with input-series output-parallel (ISOP) connection are widely used in high-power applications. In the ISOP connection, the total input voltage and output current should be divided equally between the converters. However, in order to achieve this purpose, a proper control scheme should be used. This study proposes two control schemes: (i) output current feedback (OCF) and (ii) input voltage feedback (IVF). Based on the power balance, in the IVF scheme, the total output current, and in the OCF scheme, the total input voltage are divided automatically between the converters, and there is no need to use an extra control loop. The IVF and the OCF control schemes consist of two control loops: a common output voltage regulator (OVR) loop and individual input voltage sharing loops in the IVF scheme or individual output current sharing loops in the OCF scheme. The proposed control scheme can effectively improve the stability and dynamic characteristics of system. Finally, both the results of the simulation and laboratory prototype of an ISOP system consisting two forward converters have verified the performance of the IVF and OCF control schemes.

References

    1. 1)
      • 16. Guo, Z., Sha, D., Liao, X.: ‘Input voltage sharing control for input-series-output-parallel DC/DC converters without input voltage sensors’, J. Power Electron., 2012, 12, (1), pp. 8387.
    2. 2)
      • 24. Ayyanar, R., Giri, R., Mohan, N.: ‘Active input-voltage and load-current sharing in input-series and output-parallel connected modular DC–DC converters using dynamic input-voltage reference scheme’, IEEE Trans. Power Electron., 2004, 19, (6), pp. 14621473.
    3. 3)
      • 11. Xu, G., Sha, D., Liao, X.: ‘Decentralized inverse-droop control for input-series- output-parallel DC–DC converters’, IEEE Trans. Power Electron., 2015, 30, (9), pp. 46214625.
    4. 4)
      • 2. Lian, Y., Adam, G.P., Holliday, D., et al: ‘Medium-voltage DC/DC converter for offshore wind collection grid’, IET Renew. Power Gener., 2016, 10, (5), pp. 651660.
    5. 5)
      • 20. Sha, D., Deng, K., Liao, X.: ‘Duty cycle exchanging control for input- series-output-series connected two PS-FB dc–dc converters’, IEEE Trans. Power Electron., 2012, 27, (3), pp. 14901501.
    6. 6)
      • 3. Tian, Q., Huang, A.Q., Teng, H., et al: ‘A novel energy balanced variable frequency control for input-series-output-parallel modular EV fast charging stations’. 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, September 2016, pp. 16.
    7. 7)
      • 19. Sha, D., Guo, Z., Liao, X.: ‘Cross-feedback output-current-sharing control for input-series-output-parallel modular DC–DC converters’, IEEE Trans. Power Electron., 2010, 25, (11), pp. 27622771.
    8. 8)
      • 21. Qu, L., Zhang, D., Zhang, B.: ‘Output current-differential control scheme for input-series-output-parallel connected modular DC–DC converters’, IEEE Trans. Power Electron., 2016, 32, (7), pp. 56995711.
    9. 9)
      • 23. Xu, G., Sha, D., Liao, X.: ‘Input-series-output-parallel connected modular high frequency isolated AC–AC converters with positive compensation of inner-current loop’, IET Power Electron., 2016, 9, (9), pp. 17841791.
    10. 10)
      • 15. Chen, W., Fu, X., Xue, C., et al: ‘Indirect input-series output-parallel DC–DC full bridge converter system based on asymmetric pulse width modulation control strategy’, IEEE Trans. Power Electron., 2019, 34, (4), pp. 31643177.
    11. 11)
      • 17. Wei, Q., Wu, B., Xu, D., et al: ‘Model predictive control of capacitor voltage balancing for cascaded modular DC–DC converters’, IEEE Trans. Power Electron., 2017, 32, (1), pp. 752761.
    12. 12)
      • 12. Grbovic, P.J.: ‘Master/slave control of input-series- and output-parallel connected converters: concept for low-cost high-voltage auxiliary power supplies’, IEEE Trans. Power Electron., 2009, 24, (2), pp. 316328.
    13. 13)
      • 9. Chen, W., Wang, G., Ruan, X., et al: ‘Wireless input-voltage-sharing control strategy for input-series output-parallel (ISOP) system based on positive output-voltage gradient method’, IEEE Trans. Ind. Electron., 2014, 61, (11), pp. 60226030.
    14. 14)
      • 14. Qu, L., Zhang, D.: ‘Input voltage sharing control scheme for input series and output series DC/DC converters using paralleled MOSFETs’, IET Power Electron., 2018, 11, (2), pp. 382390.
    15. 15)
      • 8. Bottion, A.J.B., Barbi, I.: ‘Input-series and output-series connected modular output capacitor full-bridge PWM DC–DC converter’, IEEE Trans. Ind. Electron., 2015, 62, (10), pp. 62136221.
    16. 16)
      • 6. Shi, J., Luo, J., He, X.: ‘Common-duty-ratio control of input-series output-parallel connected phase-shift full-bridge DC–DC converter modules’, IEEE Trans. Power Electron., 2011, 26, (11), pp. 33183329.
    17. 17)
      • 4. Darwish, A., Holliday, D., Finney, S.: ‘Operation and control design of an input-series–input-parallel–output-series conversion scheme for offshore DC wind systems’, IET Power Electron., 2017, 10, (15), pp. 20922103.
    18. 18)
      • 5. Chen, W., Ruan, X., Yan, H., et al: ‘DC/DC conversion systems consisting of multiple converter modules: stability, control, and experimental verifications’, IEEE Trans. Power Electron., 2009, 24, (6), pp. 14631474.
    19. 19)
      • 10. Chen, W., Wang, G.: ‘Decentralized voltage-sharing control strategy for fully modular input-series–output-series system with improved voltage regulation’, IEEE Trans. Ind. Electron., 2015, 62, (5), pp. 27772787.
    20. 20)
      • 7. Shi, J., Zhou, L., He, X.: ‘Common-duty-ratio control of input-parallel output-parallel (IPOP) connected DC–DC converter modules with automatic sharing of currents’, IEEE Trans. Power Electron., 2012, 27, (7), pp. 32773291.
    21. 21)
      • 22. Qu, L., Zhang, D., Zhang, B.: ‘Active output-voltage-sharing control scheme for input series output series connected DC–DC converters based on a master slave structure’, IEEE Trans. Power Electron., 2017, 32, (8), pp. 66386651.
    22. 22)
      • 13. Qu, L., Zhang, D., Bao, Z.: ‘Input voltage sharing control scheme for input series and output parallel connected DC–DC converters based on peak current control’, IEEE Trans. Ind. Electron., 2019, 66, (1), pp. 429439.
    23. 23)
      • 1. Kim, J., You, J., Cho, B.: ‘Modeling, control, and design of input-series output- parallel-connected converter for high-speed-train power system’, IEEE Trans. Ind. Electron., 2001, 48, (3), pp. 536544.
    24. 24)
      • 18. Sha, D., Guo, Z., Luo, T., et al: ‘A general control strategy for input-series–output-series modular DC–DC converters’, IEEE Trans. Power Electron., 2014, 29, (7), pp. 37663775.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2019.0054
Loading

Related content

content/journals/10.1049/iet-pel.2019.0054
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address