Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Displacement damage and total ionisation dose effects on 4H-SiC power devices

A comprehensive study of displacement damage and total ionisation dose effects on 4H-silicon carbide power devices is presented. Power diodes and transistors produced by different manufacturers were irradiated by high-energy particles (protons, alphas, electrons and neutrons). The influence of radiation on device characteristics was determined, the introduced radiation defects were identified, and the main degradation mechanisms were established. Results show that radiation leads to the creation of acceptor traps in the lightly doped drift regions of irradiated devices. Devices then degrade due to the removal of the carriers and the decrease in carrier mobility and lifetime. For unipolar devices, the gradual increase of the forward voltage is typical while the blocking characteristics remain nearly unchanged. In bipolar devices, high introduction rates of defects cause a sharp reduction of carrier lifetime. This results in shorter carrier diffusion lengths and subsequent loss of conductivity modulation leading to a sharp increase of the forward voltage drop. The irradiation also shifts the threshold voltage of power switches. That is critical, namely for metal–oxide–semiconductor field-effect transistors. According to the authors’ study, the junction barrier Schottky diode and junction field-effect transistor (JFET) can be considered the most radiation-resistant SiC power devices.

References

    1. 1)
      • 35. Alfieri, G., Monakhov, E.V., Svensson, B.G., et al: ‘Annealing behavior between room temperature and 2000°C of deep level defects in electron–irradiated n-type 4H silicon carbide’, J. Appl. Phys., 2005, 98, (4), p. 043518.
    2. 2)
      • 19. Lebedev, A.A., Kozlovski, V.V., Levinshtein, M.E., et al: ‘Effect of high energy (15 MeV) proton irradiation on vertical power 4H-SiC MOSFETs’, Semicond. Sci. Technol., 2019, 34, p. 045004.
    3. 3)
      • 33. Castaldini, A., Cavallini, A., Rigutti, L., et al: ‘Low-temperature annealing of irradiation induced defects in 4H-SiC’, Appl. Phys. Lett., 2004, 85, (17), pp. 37803782.
    4. 4)
      • 43. Hazdra, P., Záhlava, V., Vobecký, J.: ‘Point defects in 4H-SiC epilayers introduced by neutron irradiation applications’, Nucl. Instrum. Methods Phys. Res. B, 2014, 327, pp. 124127.
    5. 5)
      • 4. Kobayashi, Y., Yokozeki, T., Matsuda, T., et al: ‘Gamma-ray irradiation response of the motor-driver circuit with SiC MOSFETs’, Mater. Sci. Forum, 2016, 859, pp. 868871.
    6. 6)
      • 9. Phlips, B.F., Hobart, K.D., Kub, F.J., et al: ‘Silicon carbide pin diodes as radiation detectors’, IEEE Nucl. Sci. Symp. Conf. Rec., 2005, N34–6, pp. 12361239.
    7. 7)
      • 51. Arnolda, P., Inguimbert, C., Nuns, T., et al: ‘NIEL scaling: comparison with measured defect Introduction rate in silicon’, IEEE Trans. Nucl. Sci., 2011, 58, (3), pp. 756763.
    8. 8)
      • 44. Kimerling, L.C.: ‘Influence of deep traps on the measurement of free carrier distributions in semiconductors by junction capacitance techniques’, J. Appl. Phys., 1974, 45, (4), pp. 18391845.
    9. 9)
      • 41. Ziegler, J.F., Ziegler, M.D., Biersack, J.P.: ‘SRIM – the stopping and range of ions in matter (2010)’, Nucl. Instrum. Methods Phys. Res. B, 2010, B268, (11–12), pp. 18181823.
    10. 10)
      • 7. SJEP170R550 Datasheet Rev 1.4, SemiSouth, 2011.
    11. 11)
      • 5. Power Products. Available at http://www.wolfspeed.com/power/products, accessed 26 December 2018.
    12. 12)
      • 8. Bakowski, M., Ranstad, P., Lim, J.K., et al: ‘Design and characterization of newly developed 10 kV 2 A Sic p–i–n diode for soft-switching industrial power supply’, IEEE Trans. Electron Devices, 2015, 62, (2), pp. 366373.
    13. 13)
      • 12. Luo, Z., Chen, T., Cressler, J.D., et al: ‘Impact of proton irradiation on the static and dynamic characteristics of high-voltage 4H-SiC JBS switching diodes’, IEEE Trans. Nucl. Sci., 2003, 50, (6), pp. 18211826.
    14. 14)
      • 50. Hazdra, P., Popelka, S.: ‘Radiation resistance of wide-band gap semiconductor power transistors’, Phys. Status Solidi A, 2017, 214, (4), p. 1600447.
    15. 15)
      • 46. Brotherton, S.D., Bradley, P.: ‘Defect production and lifetime control in electron and γ-irradiated silicon’, J. Appl. Phys., 1982, 53, (8), pp. 57205732.
    16. 16)
      • 24. Hazdra, P., Popelka, S.: ‘Total irradiation dose effects on 4H-SiC power devices’, Proc. ISPS'18, Prague, Czech Republic, August 2018, pp. 8591.
    17. 17)
      • 10. Nava, F., Castaldini, A., Cavallini, A., et al: ‘Radiation detection properties of 4H-SiC Schottky diodes irradiated up to 1016 n/cm2 by 1 MeV neutrons’, IEEE Trans. Nucl. Sci., 2006, 53, (5), pp. 29772982.
    18. 18)
      • 18. Florentin, M., Alexandru, M., Constant, A., et al: ‘Proton and electron irradiation in oxynitrided gate 4H-SiC MOSFET: a recent open issue’, Mater. Sci. Forum, 2015, 821–823, pp. 667672.
    19. 19)
      • 38. Vobecký, J., Hazdra, P., Popelka, S., et al: ‘Impact of electron irradiation on the ON-state characteristics of a 4H–Sic JBS diode’, IEEE Trans. Electron Devices, 2015, 62, (6), pp. 19641969.
    20. 20)
      • 25. Hazdra, P., Popelka, S., Záhlava, V., et al: ‘Radiation damage in 4H-SiC and its effects on power device characteristics’, Solid State Phenom., 2016, 242, pp. 421426.
    21. 21)
      • 2. NASA Technology Roadmaps: Introduction, Crosscutting Technologies, and Index. Available at http://www.nasa.gov/offices/oct/home/roadmaps/index.html, accessed 20 May 2019.
    22. 22)
      • 30. Hazdra, P., Záhlava, V., Vobecký, J., et al: ‘Radiation defects produced in 4H-SiC epilayers by proton and alpha-particle irradiation’, Mater. Sci. Forum, 2013, 740–742, pp. 661664.
    23. 23)
      • 15. Akturk, A., McGarrity, J.M., Potbhare, J., et al: ‘Radiation effects in commercial 1200 V 24 A silicon carbide power MOSFETs’, IEEE Trans. Nucl. Sci., 2012, 59, (6), pp. 32583264.
    24. 24)
      • 16. Alexandru, M., Florentin, M., Constant, A., et al: ‘5 MeV proton and 15 MeV electron radiation effects study on 4H-SiC n-MOSFET electrical parameters’. Proc. 2013 14th European Conf. Radiation and its Effects on Components and Systems (RADECS), Oxford, UK, 2013, pp. G5-G1G5-6.
    25. 25)
      • 49. Palmour, J.W., Levinshtein, M.E., Ivanov, P.A., et al: ‘Surge current capabilities and isothermal current–voltage characteristics of high-voltage 4H-SiC junction barrier Schottky rectifiers’, J. Phys. D, Appl. Phys., 2015, 48, (23), p. 235103.
    26. 26)
      • 39. Hazdra, P., Popelka, S., Schöner, A.: ‘Optimization of Sic power p–i–n diode parameters by proton irradiation’, IEEE Trans. Electron. Devices, 2018, 65, (10), pp. 44834489.
    27. 27)
      • 21. McGarrity, J.M., McLean, F.B., DeLancey, W.M.: ‘Silicon carbide JFET radiation response’, IEEE Trans. Nucl. Sci., 1992, 39, pp. 19741981.
    28. 28)
      • 20. McLean, F.B., McGaritty, J.M., Scozzie, C.J., et al: ‘Analysis of neutron damage in high-temperature silicon carbide JFETs’, IEEE Trans. Nucl. Sci., 1994, 41, pp. 18841894.
    29. 29)
      • 13. Murata, K., Mitomo, S., Matsuda, T., et al: ‘Impacts of gate bias and its variation on gamma-ray irradiation resistance of SiC MOSFETs’, Phys. Status Solidi A, 2017, 214, (4), p. 1600446.
    30. 30)
      • 1. Kimoto, T., Cooper, J.A.: ‘Fundamentals of silicon carbide technology’ (John Wiley & Sons, Inc., Singapore, 2014).
    31. 31)
      • 47. Oldham, R., McGarrity, J.M.: ‘Comparison of Co-60 and 10 keV. X-ray response in MOS devices’, IEEE Trans. Nucl. Sci., 1983, 30, (6), pp. 43774381.
    32. 32)
      • 3. The ESA Materials and Components Technology. Available at https://escies.org/webdocument/showArticle?id=1002, accessed 20 May 2019.
    33. 33)
      • 37. Dalibor, T., Pensl, G., Matsunami, H., et al: ‘Deep defect centers in silicon carbide monitored with deep level transient spectroscopy’, Phys. Status Solidi A, 1997, 162, (1), pp. 199225.
    34. 34)
      • 27. Košťál, M., Rypar, V., Švadlenková, M., et al: ‘Irradiation capabilities of LR-0 reactor with VVER-1000 mock-up core’, Appl. Radiat. Isot., 2013, 82, pp. 193199.
    35. 35)
      • 23. Merrett, J.N., Williams, J.R., Cressler, J.D., et al: ‘Gamma and proton irradiation effects on 4H-SiC depletion-mode trench JFETs’, Mater. Sci. Forum, 2005, 483–485, pp. 885888.
    36. 36)
      • 29. Vobecký, J., Hazdra, P., Záhlava, V.: ‘Open circuit voltage decay lifetime of ion irradiated devices’, Microelectron. J., 1999, 30, (6), pp. 513520.
    37. 37)
      • 6. 1200 V CoolSiC™ Power Transistor IJW120R070T1 Datasheet Rev 2.0, Infineon, 2013.
    38. 38)
      • 40. Popelka, S., Hazdra, P., Sharma, R.K., et al: ‘Effect of neutron irradiation on high-voltage 4H-SiC vertical JFET characteristics: characterization and modeling’, IEEE Trans. Nucl. Sci., 2014, 61, (6), pp. 30303036.
    39. 39)
      • 26. Kliský, V.: ‘The irradiation laboratory at ČKD semiconductors Praha’, Nucl. Instrum. Methods Phys. Res. B, 1990, 50, (1–4), pp. 420422.
    40. 40)
      • 11. Lebedev, A.A., Davydovskaya, K.S., Yakimenko, A.N., et al: ‘A study of the effect of electron and proton irradiation on 4H-SiC device structures’, Tech. Phys. Lett., 2017, 43, (11), pp. 10271029.
    41. 41)
      • 32. Doyle, J.P., Linnarsson, M.K., Pellegrino, P., et al: ‘Electrically active point defects in n-type 4H-SiC’, J. Appl. Phys., 1998, 84, (3), pp. 13541357.
    42. 42)
      • 34. Storasta, L., Bergman, J.P., Janzén, E., et al: ‘Deep levels created by low energy electron irradiation in 4H-Sic’, J. Appl. Phys., 2004, 96, (9), pp. 49094915.
    43. 43)
      • 45. Vanhellemont, J., Simoen, E., Claeys, C., et al: ‘On the impact of low fluence irradiation with MeV particles on silicon diode characteristics and related material properties’, IEEE Trans. Nucl. Sci., 1994, 41, (6), pp. 19241931.
    44. 44)
      • 48. Dixit, S.K., Dhar, S., Rozen, J., et al: ‘Total dose radiation response of nitrided and non-nitrided SiO2/4H-SiC MOS capacitors’, IEEE Trans. Nucl. Sci., 2006, 53, (6), pp. 36873692.
    45. 45)
      • 28. Macková, A., Havránek, V.: ‘Ion beams provided by small accelerators for material synthesis and characterization’. Proc. Carpathian Summer School of Physics 2016, Sinaia, Romania, 2017, vol. 1852, p. 060003.
    46. 46)
      • 22. Tala-Ighil, B., Trolet, J.-L., Gaulous, H., et al: ‘Experimental and comparative study of gamma radiation effects on Si-IGBT and SiC-JFET’, Microelectron. Reliab., 2015, 55, pp. 15121516.
    47. 47)
      • 17. Florentin, M., Alexandru, M., Constant, A., et al: ‘10 MeV proton irradiation effect on 4H-SiC n-MOSFET electrical parameters’, Mater. Sci. Forum, 2015, 806, pp. 121125.
    48. 48)
      • 42. Hazdra, P., Popelka, S.: ‘Lifetime control in Sic Pin diodes using radiation defects’, Mater. Sci. Forum, 2017, 897, pp. 463466.
    49. 49)
      • 36. Izzo, G., Litrico, G., Calcagno, L., et al: ‘Electrical properties of high energy ion irradiated 4H-SiC Schottky diodes’, J. Appl. Phys., 2008, 104, (9), p. 093711.
    50. 50)
      • 14. Waskiewicz, R.J., Anders, M.A., Lenahan, P.M., et al: ‘Ionizing radiation effects in 4H-SiC nMOSFETs studied with electrically detected magnetic resonance’, IEEE Trans. Nucl. Sci., 2017, 64, (1), pp. 197203.
    51. 51)
      • 31. Hemmingsson, C., Son, N.T., Kordina, O., et al: ‘Deep level defects in electron irradiated 4H-SiC epitaxial layers’, J. Appl. Phys., 1997, 81, (9), pp. 61556159.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2019.0049
Loading

Related content

content/journals/10.1049/iet-pel.2019.0049
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address