http://iet.metastore.ingenta.com
1887

Displacement damage and total ionisation dose effects on 4H-SiC power devices

Displacement damage and total ionisation dose effects on 4H-SiC power devices

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A comprehensive study of displacement damage and total ionisation dose effects on 4H-silicon carbide power devices is presented. Power diodes and transistors produced by different manufacturers were irradiated by high-energy particles (protons, alphas, electrons and neutrons). The influence of radiation on device characteristics was determined, the introduced radiation defects were identified, and the main degradation mechanisms were established. Results show that radiation leads to the creation of acceptor traps in the lightly doped drift regions of irradiated devices. Devices then degrade due to the removal of the carriers and the decrease in carrier mobility and lifetime. For unipolar devices, the gradual increase of the forward voltage is typical while the blocking characteristics remain nearly unchanged. In bipolar devices, high introduction rates of defects cause a sharp reduction of carrier lifetime. This results in shorter carrier diffusion lengths and subsequent loss of conductivity modulation leading to a sharp increase of the forward voltage drop. The irradiation also shifts the threshold voltage of power switches. That is critical, namely for metal–oxide–semiconductor field-effect transistors. According to the authors’ study, the junction barrier Schottky diode and junction field-effect transistor (JFET) can be considered the most radiation-resistant SiC power devices.

References

    1. 1)
      • 1. Kimoto, T., Cooper, J.A.: ‘Fundamentals of silicon carbide technology’ (John Wiley & Sons, Inc., Singapore, 2014).
    2. 2)
      • 2. NASA Technology Roadmaps: Introduction, Crosscutting Technologies, and Index. Available at http://www.nasa.gov/offices/oct/home/roadmaps/index.html, accessed 20 May 2019.
    3. 3)
      • 3. The ESA Materials and Components Technology. Available at https://escies.org/webdocument/showArticle?id=1002, accessed 20 May 2019.
    4. 4)
      • 4. Kobayashi, Y., Yokozeki, T., Matsuda, T., et al: ‘Gamma-ray irradiation response of the motor-driver circuit with SiC MOSFETs’, Mater. Sci. Forum, 2016, 859, pp. 868871.
    5. 5)
      • 5. Power Products. Available at http://www.wolfspeed.com/power/products, accessed 26 December 2018.
    6. 6)
      • 6. 1200 V CoolSiC™ Power Transistor IJW120R070T1 Datasheet Rev 2.0, Infineon, 2013.
    7. 7)
      • 7. SJEP170R550 Datasheet Rev 1.4, SemiSouth, 2011.
    8. 8)
      • 8. Bakowski, M., Ranstad, P., Lim, J.K., et al: ‘Design and characterization of newly developed 10 kV 2 A Sic p–i–n diode for soft-switching industrial power supply’, IEEE Trans. Electron Devices, 2015, 62, (2), pp. 366373.
    9. 9)
      • 9. Phlips, B.F., Hobart, K.D., Kub, F.J., et al: ‘Silicon carbide pin diodes as radiation detectors’, IEEE Nucl. Sci. Symp. Conf. Rec., 2005, N34–6, pp. 12361239.
    10. 10)
      • 10. Nava, F., Castaldini, A., Cavallini, A., et al: ‘Radiation detection properties of 4H-SiC Schottky diodes irradiated up to 1016 n/cm2 by 1 MeV neutrons’, IEEE Trans. Nucl. Sci., 2006, 53, (5), pp. 29772982.
    11. 11)
      • 11. Lebedev, A.A., Davydovskaya, K.S., Yakimenko, A.N., et al: ‘A study of the effect of electron and proton irradiation on 4H-SiC device structures’, Tech. Phys. Lett., 2017, 43, (11), pp. 10271029.
    12. 12)
      • 12. Luo, Z., Chen, T., Cressler, J.D., et al: ‘Impact of proton irradiation on the static and dynamic characteristics of high-voltage 4H-SiC JBS switching diodes’, IEEE Trans. Nucl. Sci., 2003, 50, (6), pp. 18211826.
    13. 13)
      • 13. Murata, K., Mitomo, S., Matsuda, T., et al: ‘Impacts of gate bias and its variation on gamma-ray irradiation resistance of SiC MOSFETs’, Phys. Status Solidi A, 2017, 214, (4), p. 1600446.
    14. 14)
      • 14. Waskiewicz, R.J., Anders, M.A., Lenahan, P.M., et al: ‘Ionizing radiation effects in 4H-SiC nMOSFETs studied with electrically detected magnetic resonance’, IEEE Trans. Nucl. Sci., 2017, 64, (1), pp. 197203.
    15. 15)
      • 15. Akturk, A., McGarrity, J.M., Potbhare, J., et al: ‘Radiation effects in commercial 1200 V 24 A silicon carbide power MOSFETs’, IEEE Trans. Nucl. Sci., 2012, 59, (6), pp. 32583264.
    16. 16)
      • 16. Alexandru, M., Florentin, M., Constant, A., et al: ‘5 MeV proton and 15 MeV electron radiation effects study on 4H-SiC n-MOSFET electrical parameters’. Proc. 2013 14th European Conf. Radiation and its Effects on Components and Systems (RADECS), Oxford, UK, 2013, pp. G5-G1G5-6.
    17. 17)
      • 17. Florentin, M., Alexandru, M., Constant, A., et al: ‘10 MeV proton irradiation effect on 4H-SiC n-MOSFET electrical parameters’, Mater. Sci. Forum, 2015, 806, pp. 121125.
    18. 18)
      • 18. Florentin, M., Alexandru, M., Constant, A., et al: ‘Proton and electron irradiation in oxynitrided gate 4H-SiC MOSFET: a recent open issue’, Mater. Sci. Forum, 2015, 821–823, pp. 667672.
    19. 19)
      • 19. Lebedev, A.A., Kozlovski, V.V., Levinshtein, M.E., et al: ‘Effect of high energy (15 MeV) proton irradiation on vertical power 4H-SiC MOSFETs’, Semicond. Sci. Technol., 2019, 34, p. 045004.
    20. 20)
      • 20. McLean, F.B., McGaritty, J.M., Scozzie, C.J., et al: ‘Analysis of neutron damage in high-temperature silicon carbide JFETs’, IEEE Trans. Nucl. Sci., 1994, 41, pp. 18841894.
    21. 21)
      • 21. McGarrity, J.M., McLean, F.B., DeLancey, W.M.: ‘Silicon carbide JFET radiation response’, IEEE Trans. Nucl. Sci., 1992, 39, pp. 19741981.
    22. 22)
      • 22. Tala-Ighil, B., Trolet, J.-L., Gaulous, H., et al: ‘Experimental and comparative study of gamma radiation effects on Si-IGBT and SiC-JFET’, Microelectron. Reliab., 2015, 55, pp. 15121516.
    23. 23)
      • 23. Merrett, J.N., Williams, J.R., Cressler, J.D., et al: ‘Gamma and proton irradiation effects on 4H-SiC depletion-mode trench JFETs’, Mater. Sci. Forum, 2005, 483–485, pp. 885888.
    24. 24)
      • 24. Hazdra, P., Popelka, S.: ‘Total irradiation dose effects on 4H-SiC power devices’, Proc. ISPS'18, Prague, Czech Republic, August 2018, pp. 8591.
    25. 25)
      • 25. Hazdra, P., Popelka, S., Záhlava, V., et al: ‘Radiation damage in 4H-SiC and its effects on power device characteristics’, Solid State Phenom., 2016, 242, pp. 421426.
    26. 26)
      • 26. Kliský, V.: ‘The irradiation laboratory at ČKD semiconductors Praha’, Nucl. Instrum. Methods Phys. Res. B, 1990, 50, (1–4), pp. 420422.
    27. 27)
      • 27. Košťál, M., Rypar, V., Švadlenková, M., et al: ‘Irradiation capabilities of LR-0 reactor with VVER-1000 mock-up core’, Appl. Radiat. Isot., 2013, 82, pp. 193199.
    28. 28)
      • 28. Macková, A., Havránek, V.: ‘Ion beams provided by small accelerators for material synthesis and characterization’. Proc. Carpathian Summer School of Physics 2016, Sinaia, Romania, 2017, vol. 1852, p. 060003.
    29. 29)
      • 29. Vobecký, J., Hazdra, P., Záhlava, V.: ‘Open circuit voltage decay lifetime of ion irradiated devices’, Microelectron. J., 1999, 30, (6), pp. 513520.
    30. 30)
      • 30. Hazdra, P., Záhlava, V., Vobecký, J., et al: ‘Radiation defects produced in 4H-SiC epilayers by proton and alpha-particle irradiation’, Mater. Sci. Forum, 2013, 740–742, pp. 661664.
    31. 31)
      • 31. Hemmingsson, C., Son, N.T., Kordina, O., et al: ‘Deep level defects in electron irradiated 4H-SiC epitaxial layers’, J. Appl. Phys., 1997, 81, (9), pp. 61556159.
    32. 32)
      • 32. Doyle, J.P., Linnarsson, M.K., Pellegrino, P., et al: ‘Electrically active point defects in n-type 4H-SiC’, J. Appl. Phys., 1998, 84, (3), pp. 13541357.
    33. 33)
      • 33. Castaldini, A., Cavallini, A., Rigutti, L., et al: ‘Low-temperature annealing of irradiation induced defects in 4H-SiC’, Appl. Phys. Lett., 2004, 85, (17), pp. 37803782.
    34. 34)
      • 34. Storasta, L., Bergman, J.P., Janzén, E., et al: ‘Deep levels created by low energy electron irradiation in 4H-Sic’, J. Appl. Phys., 2004, 96, (9), pp. 49094915.
    35. 35)
      • 35. Alfieri, G., Monakhov, E.V., Svensson, B.G., et al: ‘Annealing behavior between room temperature and 2000°C of deep level defects in electron–irradiated n-type 4H silicon carbide’, J. Appl. Phys., 2005, 98, (4), p. 043518.
    36. 36)
      • 36. Izzo, G., Litrico, G., Calcagno, L., et al: ‘Electrical properties of high energy ion irradiated 4H-SiC Schottky diodes’, J. Appl. Phys., 2008, 104, (9), p. 093711.
    37. 37)
      • 37. Dalibor, T., Pensl, G., Matsunami, H., et al: ‘Deep defect centers in silicon carbide monitored with deep level transient spectroscopy’, Phys. Status Solidi A, 1997, 162, (1), pp. 199225.
    38. 38)
      • 38. Vobecký, J., Hazdra, P., Popelka, S., et al: ‘Impact of electron irradiation on the ON-state characteristics of a 4H–Sic JBS diode’, IEEE Trans. Electron Devices, 2015, 62, (6), pp. 19641969.
    39. 39)
      • 39. Hazdra, P., Popelka, S., Schöner, A.: ‘Optimization of Sic power p–i–n diode parameters by proton irradiation’, IEEE Trans. Electron. Devices, 2018, 65, (10), pp. 44834489.
    40. 40)
      • 40. Popelka, S., Hazdra, P., Sharma, R.K., et al: ‘Effect of neutron irradiation on high-voltage 4H-SiC vertical JFET characteristics: characterization and modeling’, IEEE Trans. Nucl. Sci., 2014, 61, (6), pp. 30303036.
    41. 41)
      • 41. Ziegler, J.F., Ziegler, M.D., Biersack, J.P.: ‘SRIM – the stopping and range of ions in matter (2010)’, Nucl. Instrum. Methods Phys. Res. B, 2010, B268, (11–12), pp. 18181823.
    42. 42)
      • 42. Hazdra, P., Popelka, S.: ‘Lifetime control in Sic Pin diodes using radiation defects’, Mater. Sci. Forum, 2017, 897, pp. 463466.
    43. 43)
      • 43. Hazdra, P., Záhlava, V., Vobecký, J.: ‘Point defects in 4H-SiC epilayers introduced by neutron irradiation applications’, Nucl. Instrum. Methods Phys. Res. B, 2014, 327, pp. 124127.
    44. 44)
      • 44. Kimerling, L.C.: ‘Influence of deep traps on the measurement of free carrier distributions in semiconductors by junction capacitance techniques’, J. Appl. Phys., 1974, 45, (4), pp. 18391845.
    45. 45)
      • 45. Vanhellemont, J., Simoen, E., Claeys, C., et al: ‘On the impact of low fluence irradiation with MeV particles on silicon diode characteristics and related material properties’, IEEE Trans. Nucl. Sci., 1994, 41, (6), pp. 19241931.
    46. 46)
      • 46. Brotherton, S.D., Bradley, P.: ‘Defect production and lifetime control in electron and γ-irradiated silicon’, J. Appl. Phys., 1982, 53, (8), pp. 57205732.
    47. 47)
      • 47. Oldham, R., McGarrity, J.M.: ‘Comparison of Co-60 and 10 keV. X-ray response in MOS devices’, IEEE Trans. Nucl. Sci., 1983, 30, (6), pp. 43774381.
    48. 48)
      • 48. Dixit, S.K., Dhar, S., Rozen, J., et al: ‘Total dose radiation response of nitrided and non-nitrided SiO2/4H-SiC MOS capacitors’, IEEE Trans. Nucl. Sci., 2006, 53, (6), pp. 36873692.
    49. 49)
      • 49. Palmour, J.W., Levinshtein, M.E., Ivanov, P.A., et al: ‘Surge current capabilities and isothermal current–voltage characteristics of high-voltage 4H-SiC junction barrier Schottky rectifiers’, J. Phys. D, Appl. Phys., 2015, 48, (23), p. 235103.
    50. 50)
      • 50. Hazdra, P., Popelka, S.: ‘Radiation resistance of wide-band gap semiconductor power transistors’, Phys. Status Solidi A, 2017, 214, (4), p. 1600447.
    51. 51)
      • 51. Arnolda, P., Inguimbert, C., Nuns, T., et al: ‘NIEL scaling: comparison with measured defect Introduction rate in silicon’, IEEE Trans. Nucl. Sci., 2011, 58, (3), pp. 756763.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2019.0049
Loading

Related content

content/journals/10.1049/iet-pel.2019.0049
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address