access icon free Flux and torque ripple minimisation for permanent magnet synchronous motor by finite-set hybrid direct torque control

A hybrid direct torque control (DTC) method is proposed in this study for a permanent magnet synchronous motor (PMSM) drive based on the finite-set control (FSC). After selecting the optimal voltage vectors, the steady-state torque and flux ripple is minimised using the conventional DTC and the most efficient and dynamically-fast mode of the control algorithm. The philosophy of the control approach proposed is based on the FSC and DTC. In other words, the process of optimisation relies on a combination of FSC DTC. Compared to conventional PMSM drive control, the proposed technique optimises the switching state of the inverter and minimises the cost function by adopting measures resembling DTC. In addition, the sensitivity of this method to motor parameters is very low, and it is computationally simple. The results obtained from the experiments and simulations validated the applicability of this method to PMSM drives by suggesting that the proposed model provides dynamically-fast responses to low torque and flux ripples using a simple-to-implement hybrid structure.

Inspec keywords: machine control; synchronous motor drives; torque control; permanent magnet motors; invertors

Other keywords: permanent magnet synchronous motor drive; inverter; PMSM drive control; dynamically-fast mode; motor parameters; optimal voltage vectors; FSC DTC; finite-set hybrid direct torque control; finite-set control; flux ripples; torque ripple minimisation; DTC; steady-state torque; hybrid structure; hybrid direct torque control method; flux ripple; PMSM drives

Subjects: Mechanical variables control; Synchronous machines; Drives; Optimisation techniques; Control of electric power systems

References

    1. 1)
      • 15. Casadei, D., Profumo, F., Serra, G., et al: ‘FOC and DTC: two viable schemes for induction motors torque control’, IEEE Trans. Power Electron., 2002, 17, (5), pp. 779787.
    2. 2)
      • 12. Vafaie, M.H., Dehkordi, B.M., Moallem, P., et al: ‘A new predictive direct torque control method for improving both steady-state and transient-state operations of the PMSM’, IEEE Trans. Power Electron., 2016, 31, (5), pp. 37383753.
    3. 3)
      • 3. Lin-Shi, X., Morel, F., Llor, A.M., et al: ‘Implementation of hybrid control for motor drives’, IEEE Trans. Ind. Electron., 2007, 54, (4), pp. 19461952.
    4. 4)
      • 26. Liu, Q., Hameyer, K.: ‘Torque ripple minimization for direct torque control of PMSM with modified FCSMPC’, IEEE Trans. Ind. Appl., 2016, 52, (6), pp. 48554864.
    5. 5)
      • 4. Yan, Y., Wang, S., Xia, C., et al: ‘Hybrid control set-model predictive control for field-oriented control of VSI-PMSM’, IEEE Trans. Energy Convers., 2016, 31, (4), pp. 16221633.
    6. 6)
      • 7. Navardi, M.J., Babaghorbani, B., Ketabi, A.: ‘Efficiency improvement and torque ripple minimization of switched reluctance motor using FEM and seeker optimization algorithm’, Energy Convers. Manag., 2014, 78, pp. 237244.
    7. 7)
      • 17. Ren, Y., Zhu, Z.Q., Liu, J.: ‘Direct torque control of permanent-magnet synchronous machine drives with a simple duty ratio regulator’, IEEE Trans. Ind. Electron., 2014, 61, (10), pp. 52495258.
    8. 8)
      • 13. Stumper, J.F., Hagenmeyer, V., Kuehl, S., et al: ‘Deadbeat control for electrical drives: a robust and performant design based on differential flatness’, IEEE Trans. Power Electron., 2015, 30, (8), pp. 45854596.
    9. 9)
      • 14. Yan, Y., Zhao, J., Xia, C., et al: ‘Direct torque control of matrix converter-fed permanent magnet synchronous motor drives based on master and slave vectors’, IET Power Electron., 2015, 8, (2), pp. 288296.
    10. 10)
      • 33. Tang, L., Zhong, L., Rahman, M.F., et al: ‘A novel direct torque control for interior permanent-magnet synchronous machine drive with low ripple in torque and flux - A speed-sensorless approach’, IEEE Trans. Ind. Appl., 2003, 39, (6), pp. 17481756.
    11. 11)
      • 6. Lin, F.-J., Hung, Y.-C., Hwang, J.-C., et al: ‘Digital signal processor-based probabilistic fuzzy neural network control of in-wheel motor drive for light electric vehicle’, IET Electr. Power Appl., 2012, 6, (2), p. 47.
    12. 12)
      • 16. Lascu, C., Trzynadlowski, A.M.: ‘Combining the principles of sliding mode, direct torque control, and space-vector modulation in a high-performance sensorless AC drive’, IEEE Trans. Ind. Appl., 2004, 40, (1), pp. 170177.
    13. 13)
      • 19. Siami, M., Arab Khaburi, D., Rivera, M., et al: ‘A computationally efficient lookup table based FCS-MPC for PMSM drives fed by matrix converters’, IEEE Trans. Ind. Electron., 2017, 46, (c), pp. 11.
    14. 14)
      • 8. Cho, K.M., Oh, W.S., Kim, Y.T., et al: ‘A new switching strategy for pulse width modulation (PWM) power converters’, IEEE Trans. Ind. Electron., 2007, 54, (1), pp. 330337.
    15. 15)
      • 9. Bozorgi, A.M., Farasat, M., Jafarishiadeh, S.: ‘Model predictive current control of surface-mounted permanent magnet synchronous motor with low torque and current ripple’, IET Power Electron., 2017, 10, (10), pp. 11201128.
    16. 16)
      • 28. Noguchi, T., Yamada, K., Kondo, S., et al: ‘Initial rotor position estimation method of sensorless pm synchronous motor with no sensitivity to armature resistance’, IEEE Trans. Ind. Electron., 1998, 45, (1), pp. 118125.
    17. 17)
      • 10. Guzinski, J., Abu-Rub, H.: ‘Speed sensorless induction motor drive with predictive current controller’, IEEE Trans. Ind. Electron., 2013, 60, (2), pp. 699709.
    18. 18)
      • 31. Nikzad, M.R., Asaei, B., Ahmadi, S.O.: ‘Discrete duty-cycle-control method for direct torque control of induction motor drives with model predictive solution’, IEEE Trans. Power Electron., 2018, 33, (3), pp. 23172329.
    19. 19)
      • 5. Gao, J., Wu, X., Huang, S., et al: ‘Torque ripple minimisation of permanent magnet synchronous motor using a new proportional resonant controller’, IET Power Electron., 2017, 10, (2), pp. 208214.
    20. 20)
      • 25. Habibullah, M., Lu, D.D.-C., Xiao, D., et al: ‘A simplified finite-state predictive direct torque control for induction motor drive’, IEEE Trans. Ind. Electron., 2016, 63, (6), pp. 39643975.
    21. 21)
      • 23. Geyer, T., Papafotiou, G., Morari, M.: ‘Hybrid model predictive control of the step-down DC–DC converter’, IEEE Trans. Control Syst. Technol., 2008, 16, (6), pp. 11121124.
    22. 22)
      • 32. Mei, C.G., Panda, S.K., Xu, J.X., et al: ‘Direct torque control of induction motor-variable switching sectors’. Proc. IEEE 1999 Int. Conf. (Volume1) Power Electron. Drive Syst. 1999. PEDS ‘99, Hong Kong, People's Republic of China, July 1999, vol. 1, pp. 8085.
    23. 23)
      • 1. Miranbeigi, M., Iman-Eini, H.: ‘Hybrid modulation technique for grid-connected cascaded photovoltaic systems’, IEEE Trans. Ind. Electron., 2016, 63, (12), pp. 78437853.
    24. 24)
      • 22. Foo, G.H.B., Rahman, M.F.: ‘Direct torque control of an IPM-synchronous motor drive at very low speed using a sliding-mode stator flux observer’, IEEE Trans. Power Electron., 2010, 25, (4), pp. 933942.
    25. 25)
      • 27. Zhong, L., Rahman, M.F., Hu, W.Y., et al: ‘Analysis of direct torque control in permanent magnet synchronous motor drives’, IEEE Trans. Power Electron., 1997, 12, (3), pp. 528536.
    26. 26)
      • 30. Ogata, K.: ‘Modern Control Engineering’, 2010.
    27. 27)
      • 2. Afshang, H., Tahami, F., Molla-ahmadian, H.: ‘Hybrid control of the DC-DC series resonant converter operating below resonance’, IET Power Electron., 2017, 10, (1), pp. 119.
    28. 28)
      • 29. Jeong, Y.S., Lorenz, R.D., Jahns, T.M., et al: ‘Initial rotor position estimation of an interior permanent-magnet synchronous machine using carrier-frequency injection methods’, IEEE Trans. Ind. Appl., 2005, 41, (1), pp. 3845.
    29. 29)
      • 20. Cho, Y., Lee, K.B., Song, J.H., et al: ‘Torque-ripple minimization and fast dynamic scheme for torque predictive control of permanent-magnet synchronous motors’, IEEE Trans. Power Electron., 2015, 30, (4), pp. 21822190.
    30. 30)
      • 24. Di Cairano, S., Yanakiev, D., Bemporad, A., et al: ‘Model predictive idle speed control: design, analysis, and experimental evaluation’, IEEE Trans. Control Syst. Technol., 2012, 20, (1), pp. 8497.
    31. 31)
      • 21. Kirankumar, B., Siva Reddy, Y.V., Vijayakumar, M.: ‘Multilevel inverter with space vector modulation: intelligence direct torque control of induction motor’, IET Power Electron., 2017, 10, (10), pp. 11291137.
    32. 32)
      • 11. Rodriguez, J., Kazmierkowski, M.P., Espinoza, J.R., et al: ‘State of the art of finite control set model predictive control in power electronics’, IEEE Trans. Ind. Inf., 2013, 9, (2), pp. 10031016.
    33. 33)
      • 18. Uddin, M., Rivera, M., Mekhilef, S.: ‘Experimental validation of minimum cost function-based model predictive converter control with efficient reference tracking’, IET Power Electron., 2015, 8, (2), pp. 278287.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2019.0038
Loading

Related content

content/journals/10.1049/iet-pel.2019.0038
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading