access icon free Accurate frequency-domain analysis and hybrid control method for isolated dual active bridge series resonant DC/DC converters

This study proposes an accurate frequency model of dual active bridge series resonant DC/DC converters (DABSRC). Differing from the conventional first harmonic approximation method, the proposed steady-state model considers all the harmonic components, which gives an accurate expression of transferred power and resonant current. Based on the proposed model, a precise soft switching criterion was derived, and the soft switching region was extended. On top of that, a hybrid control strategy combining phase shift modulation and frequency modulation was proposed, to achieve soft switching under wide voltage gain and load variations. Thanks to the extended soft switching region, DABSRC can achieve zero-voltage-switching turn-on at light loads, only with a slight increase in switching frequency, hence improving the efficiency a lot. The accurate frequency model and the hybrid control were validated using a 500 W laboratory prototype. The experiment results showed accurate predictions of the proposed model and significant improvements in light load efficiency over a wide range of input voltages.

Inspec keywords: switching convertors; DC-DC power convertors; zero current switching; frequency-domain analysis; zero voltage switching; resonant power convertors; bridge circuits

Other keywords: extended soft switching region; hybrid control strategy; accurate frequency model; hybrid control method; DABSRC; harmonic components; zero-voltage-switching turn-on at light loads; accurate expression; power 500.0 W; conventional first harmonic approximation method; precise soft switching criterion; load variations; steady-state model; accurate frequency-domain analysis; wide voltage gain; isolated dual active bridge series resonant DC/DC converters

Subjects: DC-DC power convertors; Power electronics, supply and supervisory circuits; Power convertors and power supplies to apparatus; Control of electric power systems

References

    1. 1)
      • 13. Li, X., Bhat, A.: ‘Analysis and design of high-frequency isolated dual-bridge series resonant DC/DC converter’, IEEE Trans. Power Electron., 2010, 25, (4), pp. 850862.
    2. 2)
      • 19. Yaqoob, M., Loo, K., Lai, Y.M.: ‘Fully soft-switched dual-active-bridge series-resonant converter with switched-impedance-based power control’, IEEE Trans. Power Electron., 2018, 33, (11), pp. 92679281.
    3. 3)
      • 16. Kundu, U., Pant, B., Sikder, S., et al: ‘Frequency domain analysis and optimal design of isolated bidirectional series resonant converter’, IEEE Trans. Ind. Appl., 2018, 54, (1), pp. 356366.
    4. 4)
      • 14. Corradini, L., Seltzer, D., Bloomquist, D., et al: ‘Minimum current operation of bidirectional dual-bridge series resonant DC/DC converters’, IEEE Trans. Power Electron., 2012, 27, (7), pp. 32663276.
    5. 5)
      • 10. Ortiz, G., Fässler, L., Kolar, J.W., et al: ‘Flux balancing of isolation transformers and application of ‘the magnetic ear’ for closed-loop volt–second compensation’, IEEE Trans. Power Electron., 2014, 29, (8), pp. 40784090.
    6. 6)
      • 4. Zhao, B., Yu, Q., Sun, W.: ‘Extended-phase-shift control of isolated bidirectional DC–DC converter for power distribution in microgrid’, IEEE Trans. Power Electron., 2012, 27, (11), pp. 46674680.
    7. 7)
      • 17. Duy-Dinh, N., Tuyen, N.D., Goto, F., et al: ‘Dual-active-bridge series resonant converter: A new control strategy using phase-shifting combined frequency modulation’. Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada, 2015, pp. 12151222.
    8. 8)
      • 5. Karthikeyan, V., Gupta, R.: ‘Zero circulating current modulation for isolated bidirectional dual-active-bridge DC–DC converter’, IET Power Electron., 2016, 9, (7), pp. 15531561.
    9. 9)
      • 2. Falcones, S., Ayyanar, R., Mao, X.: ‘A DC–DC multiport-converter-based solid-state transformer integrating distributed generation and storage’, IEEE Trans. Power Electron., 2013, 28, (5), pp. 21922203.
    10. 10)
      • 12. Lenke, R., Mura, F., DeDoncker, R.W.: ‘Comparison of non-resonant and super-resonant dual-active ZVS-operated high-power DC-DC converters’. European Conf. on Power Electronics and Applications, Barcelona, Spain, 2009, pp. 110.
    11. 11)
      • 20. Riedel, J., Holmes, D.G., McGrath, B.P., et al: ‘ZVS soft switching boundaries for dual active bridge DC–DC converters using frequency domain analysis’, IEEE Trans. Power Electron., 2017, 32, (4), pp. 31663179.
    12. 12)
      • 11. Dutta, S., Bhattacharya, S.: ‘A method to measure the DC bias in high frequency isolation transformer of the dual active bridge DC to DC converter and its removal using current injection and PWM switching’. Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 2014, pp. 11341139.
    13. 13)
      • 15. Agamy, M., Dong, D., Garces, L., et al: ‘A high power medium voltage resonant dual active bridge for MVDC ship power networks’, IEEE J. Emerging Sel. Top. Power Electron., 2017, 5, (1), pp. 8899.
    14. 14)
      • 8. Hou, N., Song, W., Wu, M.: ‘Minimum-current-stress scheme of dual active bridge DC–DC converter with unified phase-shift control’, IEEE Trans. Power Electron., 2016, 31, (12), pp. 85528561.
    15. 15)
      • 3. Zhao, B., Song, Q., Liu, W., et al: ‘Overview of dual-active-bridge isolated bidirectional DC–DC converter for high-frequency-link power-conversion system’, IEEE Trans. Power Electron., 2014, 29, (8), pp. 40914106.
    16. 16)
      • 9. Dung, N.A., Chiu, H., Lin, J., et al: ‘Efficiency optimization of ZVS isolated bidirectional DAB converters’, IET Power Electron., 2018, 11, (7), pp. 14991506.
    17. 17)
      • 6. Wen, H., Su, B., Xiao, W.: ‘Design and performance evaluation of a bidirectional isolated dc–dc converter with extended dual-phase shift scheme’, IET Power Electron., 2013, 6, (5), pp. 914924.
    18. 18)
      • 1. Huang, A.Q., Crow, M.L., Heydt, G.T., et al: ‘The future renewable electric energy delivery and management (FREEDM) system: the energy internet’, Proc. IEEE, 2011, 99, (1), pp. 133148.
    19. 19)
      • 22. Kundu, U., Yenduri, K., Sensarma, P.: ‘Accurate ZVS analysis for magnetic design and efficiency improvement of full-bridge LLC resonant converter’, IEEE Trans. Power Electron., 2017, 32, (3), pp. 17031706.
    20. 20)
      • 7. Krismer, F., Kolar, J.W.: ‘Closed form solution for minimum conduction loss modulation of DAB converters’, IEEE Trans. Power Electron., 2012, 27, (1), pp. 174188.
    21. 21)
      • 18. Safaee, A., Jain, P., Bakhshai, A.: ‘Time-domain analysis of a wide-dc-range series resonant dual-active-bridge bidirectional converter with a new passive auxilliary circuit’. Applied Power Electronics Conf. and Exposition (APEC), Long Beach, CA, USA, 2016, pp. 460467.
    22. 22)
      • 21. Shi, H., Wen, H., Hu, Y., et al: ‘Reactive power minimization in bidirectional DC–DC converters using a unified-phasor-based particle swarm optimization’, IEEE Trans. Power Electron., 2018, 33, (12), pp. 1099011006.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2019.0015
Loading

Related content

content/journals/10.1049/iet-pel.2019.0015
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading