access icon free Offline method for determination of non-linear dependence of machine magnetising inductance utilising parallel operation of current and voltage model

The simplest mathematical models of the induction motor (IM) use the presumption of the machine's linear magnetising characteristics. However, this may hold only in a limited operating range of the electric drive. It is well known that the magnetising inductance saturates as a function of the magnetising current due to the non-linear properties of the magnetic circuit. However, this is not the only type of saturation. Depending on the design of the rotor, the machine's magnetising and leakage inductances may also saturate as a function of the rotor current. A new experimental method is proposed here. It identifies the dependence of the T equivalent circuit magnetising inductance on the rotor flux and torque producing current component using parallel operation of the so-called current and voltage model of the IM.

Inspec keywords: magnetic circuits; rotors; induction motors; machine control; magnetisation; equivalent circuits; magnetic flux; machine theory; electric drives; machine vector control; induction motor drives

Other keywords: machine magnetising inductance; current voltage model; magnetic circuit; electric drive; IM; rotor flux; magnetising inductance saturates; offline method; magnetising current; current component; nonlinear properties; parallel operation; operating range; t equivalent circuit magnetising inductance; rotor current; experimental method; induction motor; torque; simplest mathematical models; nonlinear dependence

Subjects: Magnetization curves, hysteresis, Barkhausen and related effects; Drives; Control of electric power systems; Asynchronous machines

References

    1. 1)
      • 23. Rodriguez, J., Cortes, P.: ‘Predictive control of power converters and electrical drives’ (Wiley-IEEE Press, USA, 2012).
    2. 2)
      • 12. Gerada, C., Bradley, K., Sumner, M., et al: ‘Evaluation and modelling of cross saturation due to leakage flux in vector controlled induction machines’. IEEE Int. Electric Machines and Drives Conf., 2003. IEMDC'03, Madison, WI, USA, 2003, 3, pp. 19831989.
    3. 3)
      • 3. Popescu, M.: ‘Induction motor modelling for vector control purposes’. Report, Helsinki University of Technology, Laboratory of Electromechanics, Espoo, Finland, 2000, 144p.
    4. 4)
      • 29. Salt, D.E., Drury, D., Holliday, D., et al: ‘Compensation of inverter nonlinear distortion effects for signal-injection-based sensorless control’, IEEE Trans. Ind. Appl., 2011, 47, (5), pp. 20842092.
    5. 5)
      • 22. Karlovsky, P., Lettl, J.: ‘Induction motor drive direct torque control and predictive torque control comparison based on switching pattern analysis’, Energies, 2018, 11, (7), p. 1793.
    6. 6)
      • 27. Fligl, S., Bauer, J., Vlcek, M., et al: ‘Analysis of induction machine T and Γ circuit coequality for use in electric drive controllers’. 2012 13th Int. Conf. on Optimization of Electrical and Electronic Equipment (OPTIM), Brasov, Romania, 2012, pp. 659664.
    7. 7)
      • 5. Wang, M.: ‘Parameter variation effects in sensorless vector controlled induction machines’. PhD thesis, Liverpool John Moores University, Liverpool, UK, 1999.
    8. 8)
      • 10. Kiselychnyk, O., Marc, B., Jihong, W.: ‘Comparison of two magnetic saturation models of induction machines and experimental validation’, IEEE Trans. Ind. Electron., 2017, 64, (1), pp. 8190.
    9. 9)
      • 16. Dannerer, G., Seebacher, R.R., Krischan, K., et al: ‘Modeling the induction machine's main inductance as a function of the magnetizing and the torque building component of the stator current’. 2008 18th Int. Conf. on Electrical Machines, Vilamoura, Portugal, 2008, pp. 16.
    10. 10)
      • 14. Hinkkanen, M., Repo, A., Luomi, J.: ‘Influence of magnetic saturation on induction motor model selection’. Proc. ICEM'06, Chania, Greece, September 2006.
    11. 11)
      • 28. Bolognani, S., Zigliotto, M.: ‘Self-commissioning compensation of inverter non-idealities for sensorless AC drives applications’. 2002 Int. Conf. on Power Electronics, Machines and Drives (Conf. Publ. No. 487), Sante Fe, NM, USA, 2002, pp. 3033.
    12. 12)
      • 26. Schauder, C.: ‘Adaptive speed identification for vector control of induction motors without rotational transducers’, IEEE Trans. Ind. Appl., 1992, 28, (5), pp. 10541061.
    13. 13)
      • 24. Kumar, R., Das, S., Syam, P., et al: ‘Review on model reference adaptive system for sensorless vector control of induction motor drives’, IET Electr. Power Appl., 2015, 9, (7), pp. 496511.
    14. 14)
      • 1. Vas, P.: ‘Sensorless vector and direct torque control’ (Oxford University Press, UK, 1998).
    15. 15)
      • 18. Hinkkanen, M., Repo, A., Cederholm, M., et al: ‘Small-signal modelling of saturated induction machines with closed or skewed rotor slots’. 2007 IEEE Industry Applications Annual Meeting, New Orleans, LA, USA, 2007, pp. 12001206.
    16. 16)
      • 30. Lipcak, O., Bauer, J.: ‘Optimization of voltage model for MRAS based sensorless control of induction motor’. AETA 2018 - Recent Advances in Electrical Engineering and Related Sciences: Theory and Application, Ostrava, Czech Republic, 2019 (LNEE, 554).
    17. 17)
      • 4. Sokola, M.: ‘Vector control of induction machines using improved models’. PhD thesis, Liverpool John Moores University, Liverpool, UK, 1998.
    18. 18)
      • 17. Ling, Z., Libing, Z., Siyuan, G., et al: ‘Equivalent circuit parameters calculation of induction motor by finite element analysis’, IEEE Trans. Magn., 2014, 50, (2), pp. 833836.
    19. 19)
      • 9. Moulahoum, S., Touhami, O., Ibtiouen, R., et al: ‘Induction machine modeling with saturation and series iron losses resistance’. IEEE Int. Electric Machines & Drives Conf., Antalya, Turkey, 2007, pp. 10671072.
    20. 20)
      • 21. Chatterjee, D.: ‘A novel magnetizing-curve identification and computer storage technique for induction machines suitable for online application’, IEEE Trans. Ind. Electron., 2011, 58, (12), pp. 53365343.
    21. 21)
      • 25. Rao, P., Nakka, J., Shekar, R.: ‘Sensorless vector control of induction machine using MRAS techniques’. 2013 Int. Conf. on Circuits, Power and Computing Technologies (ICCPCT), Nagercoil, India, 2013, pp. 167175.
    22. 22)
      • 20. Levi, E., Sokola, M., Vukosavic, S.N.: ‘A method for magnetizing curve identification in rotor flux oriented induction machines’, IEEE Trans. Energy Convers., 2000, 15, (2), pp. 157162.
    23. 23)
      • 6. Vas, P.: ‘Parameter estimation, condition monitoring, and diagnosis of electrical machines’ (Clarendon, UK, 1993).
    24. 24)
      • 2. Quang, N.P., Dittrich, J.: ‘Vector control of three-phase AC machines: system development in the practice’ (Springer-Verlag, Germany, 2008, 1. Aufl. ed.).
    25. 25)
      • 7. Sullivan, C.R., Sanders, S.R.: ‘Models for induction machines with magnetic saturation of the main flux path’, IEEE Trans. Ind. Appl., 1995, 31, (4), pp. 907917.
    26. 26)
      • 8. Slemon, G. R.: ‘Modelling of induction machines for electric drives’, IEEE Trans. Ind. Appl., 1989, 25, (6), pp. 11261131.
    27. 27)
      • 11. Tuovinen, T., Hinkkanen, M., Luomi, J.: ‘Modeling of saturation due to main and leakage flux interaction in induction machines’, IEEE Trans. Ind. Appl., 2010, 46, (3), pp. 937945.
    28. 28)
      • 13. Klaes, N.R.: ‘Parameter identification of an induction machine with regard to dependencies on saturation’, IEEE Trans. Ind. Appl., 1993, 29, (6), pp. 11351140.
    29. 29)
      • 15. Immonen, P., Ruuskanen, V., Nerg, J., et al: ‘Inductance saturation of the induction machine as a function of stator voltage and load with steady state AC magnetic finite element solver’, Int. Rev. Model. Simul., 2004, 7, pp. 450456.
    30. 30)
      • 19. Melkebeek, J.A.A.: ‘Magnetising-field saturation and dynamic behaviour of induction machines. Part 1: improved calculation method for induction-machine dynamics’, IEE Proc. B, Electr. Power Appl., 1983, 130, (1), pp. 19.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2018.6321
Loading

Related content

content/journals/10.1049/iet-pel.2018.6321
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading