access icon free Quasi-discrete modelling of PMSM phase currents in drives with low switching-to-fundamental frequency ratio

This study proposes a new quasi-discrete approach to modelling the permanent magnet synchronous motor (PMSM). The quasi-discrete modelling reflects the impact of continuous rotor movement, which takes place during a control cycle, on the shape of motor current waveforms. This provides much improvement in current modelling accuracy under inverter low switching-to-fundamental frequency operation. The proposed approach may be used in predictive control to compute current at forthcoming instants or in classical control to improve precision of determining mean current feedback. The superior accuracy of the quasi-discrete model is confirmed by simulation and experiment for an exemplary PMSM drive operating at inverter switching frequency of 5 kHz and fundamental frequency reaching 400 Hz.

Inspec keywords: machine vector control; permanent magnet motors; invertors; predictive control; rotors; synchronous motor drives

Other keywords: inverter low switching-to-fundamental frequency operation; inverter switching frequency; quasidiscrete approach; motor current waveforms; mean current feedback; frequency 400.0 Hz; PMSM phase currents; PMSM drive; permanent magnet synchronous motor; switching-to-fundamental frequency ratio; quasidiscrete model; frequency 5.0 kHz; quasidiscrete modelling

Subjects: Drives; DC-AC power convertors (invertors); Synchronous machines; Control of electric power systems; Optimal control

References

    1. 1)
      • 19. Persson, E.: ‘Motor current measurement using time-modulated signals’. Proc. Power Conversion Conf. PCC, Osaka, 2002, pp. 716720.
    2. 2)
      • 20. Wolf, C.M., Degner, M.W., Briz, F.: ‘Analysis of current sampling errors in PWM VSI drives’, IEEE Trans. Ind. Appl., 2015, 51, (2), pp. 15511560.
    3. 3)
      • 21. Jarzebowicz, L.: ‘Errors of a linear current approximation in high-speed PMSM drives’, IEEE Trans. Power Electron., 2017, 32, (11), pp. 82548257.
    4. 4)
      • 25. Jarzebowicz, L., Mirchevski, S.: ‘Modeling the impact of rotor movement on non-linearity of motor currents waveforms in high-speed PMSM drives’. Proc. 19th European Conf. Power Electronics and Applications EPE'2017 ECCE Europe, Warsaw, 2017.
    5. 5)
      • 24. Wang, W., Fan, Y., Chen, S., et al: ‘Finite control set model predictive current control of a five-phase PMSM with virtual voltage vectors and adaptive control set’, CES Trans. Electr. Mach. Syst., 2018, 2, (1), pp. 136141.
    6. 6)
      • 23. Zhang, Y., Huang, L., Xu, D., et al: ‘Performance evaluation of two-vector-based model predictive current control of PMSM drives’, Chinese J. Electr. Eng., 2018, 4, (2), pp. 6581.
    7. 7)
      • 6. Zabaleta, M., Jones, M., Levi, E.: ‘A tuning procedure for the current regulator loops in multiple three-phase permanent magnet machines with low switching to fundamental frequency ratio’. Proc. 19th European Conf. Power Electronics and Applications (EPE'17 ECCE Europe), Warsaw, Poland, 2017, pp. 110.
    8. 8)
      • 12. Tarczewski, T., Grzesiak, L.M.: ‘Constrained state feedback speed control of PMSM based on model predictive approach’, IEEE Trans. Ind. Electron., 2016, 63, (6), pp. 38673875.
    9. 9)
      • 17. Jarzebowicz, L.: ‘Impact of low switching-to-fundamental frequency ratio on predictive current control of PMSM: a simulation study’. Proc. 25th Int. Workshop on Electric Drives: Optimization in Control of Electric Drives (IWED), Moscow, Russia, 2018, pp. 15.
    10. 10)
      • 10. Jarzebowicz, L.: ‘Modeling the impact of discretizing rotor angular position on computation of field-oriented current components in high speed electric drives’, Appl. Math. Model., 2017, 42, pp. 576590.
    11. 11)
      • 16. Siami, M., Khaburi, D.A., Rodríguez, J.: ‘Torque ripple reduction of predictive torque control for PMSM drives with parameter mismatch’, IEEE Trans. Power Electron., 2017, 32, (9), pp. 71607168.
    12. 12)
      • 8. Kwon, Y.-C., Kim, S., Sul, S.-K.: ‘Six-step operation of PMSM with instantaneous current control’, IEEE Trans. Ind. Appl., 2014, 50, (4), pp. 26142625.
    13. 13)
      • 22. Wang, H., Yang, M., Niu, L., et al: ‘Current-loop bandwidth expansion strategy for permanent magnet synchronous motor drives’. Proc. 5th IEEE Conf. Industrial Electronics and Applications (ICIEA), Taichung, Taiwan, 2010, pp. 13401345.
    14. 14)
      • 7. Sahoo, S.K., Bhattacharya, T.: ‘Rotor flux-oriented control of induction motor with synchronized sinusoidal PWM for traction application’, IEEE Trans. Power Electron., 2016, 31, (6), pp. 44294439.
    15. 15)
      • 3. Doppelbauer, M., Winzer, P.: ‘A lighter motor for tomorrow's electric car’, IEEE Spectr., 2017, 54, (7), pp. 2631.
    16. 16)
      • 14. Ahmed, A.A., Koh, B.K., Lee, Y.I.: ‘A comparison of finite control set and continuous control set model predictive control schemes for speed control of induction motors’, IEEE Trans. Ind. Inf., 2018, 14, (4), pp. 13341346.
    17. 17)
      • 18. Anuchin, A., Briz, F., Shpak, D., et al: ‘PWM strategy for 3-phase 2-level VSI with non-idealities compensation and switching losses minimization’. Proc. IEEE Int. Electric Machines and Drives Conf. (IEMDC), Miami, FL, USA, 2017, pp. 16.
    18. 18)
      • 2. Liu, G., Chen, B., Wang, K., et al: ‘Selective current harmonic suppression for high-speed PMSM based on high-precision harmonic detection method’, IEEE Trans. Ind. Inf., 2019, 15, (6), pp. 34573468.
    19. 19)
      • 13. Sandre-Hernandez, O., Rangel-Magdaleno, J., Morales-Caporal, R.: ‘A comparison on finite-set model predictive torque control schemes for PMSMs’, IEEE Trans. Power Electron., 2018, 33, (10), pp. 88388847.
    20. 20)
      • 5. Gerada, D., Zhang, H., Xu, Z., et al: ‘Electrical machine type selection for high speed supercharger automotive applications’. Proc. 19th Int. Conf. Electrical Machines and Systems (ICEMS), Chiba, Japan, 2016, pp. 16.
    21. 21)
      • 1. Gerada, D., Mebarki, A., Brown, N.L., et al: ‘High-speed electrical machines: technologies, trends, and developments’, IEEE Trans. Ind. Electron., 2014, 61, (6), pp. 29462959.
    22. 22)
      • 11. Oleschuk, V., Barrero, F.: ‘Standard and non-standard approaches for voltage synchronization of drive inverters with space-vector PWM: a survey’, Int. Rev. Electr. Eng. (IREE), 2014, 9, (4), pp. 688707.
    23. 23)
      • 9. Sepulchre, L., Fadel, M., Pietrzak-David, M.: ‘Improvement of the digital control of a high speed PMSM for vehicle application’. Proc. Eleventh Int. Conf. Ecological Vehicles and Renewable Energies (EVER), Monte Carlo, Monaco, 2016, pp. 19.
    24. 24)
      • 15. Belda, K., Vosmik, D.: ‘Explicit generalized predictive control of speed and position of PMSM drives’, IEEE Trans. Ind. Electron., 2016, 63, (6), pp. 38893896.
    25. 25)
      • 4. Adamczyk, D., Wilk, A., Michna, M.: ‘Model of the double-rotor induction motor in terms of electromagnetic differential’, Arch. Electr. Eng., 2016, 65, (4), pp. 761772.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2018.6285
Loading

Related content

content/journals/10.1049/iet-pel.2018.6285
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading