http://iet.metastore.ingenta.com
1887

access icon offprint Family of transformerless pulse-width modulation converters integrating voltage equalisers for PV panels and energy storage modules

Loading full text...

Full text loading...

/deliver/fulltext/10.1049/iet-pel.2018.6158/IET-PEL.2018.6158.html;jsessionid=l8srkr9jin14.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-pel.2018.6158&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. MacAlpine, S.M., Erickson, R.W., Brandemuehl, M.J.: ‘Characterization of power optimizer potential to increase energy capture in photovoltaic systems operating under nonuniform conditions’, IEEE Trans. Power Electron., 2013, 28, (6), pp. 29362945.
    2. 2)
      • 2. Bergveld, H.J., Büthker, D., Castello, C., et al: ‘Module-level DC/DC conversion for photovoltaic systems: the delta-conversion concept’, IEEE Trans. Power Electron., 2013, 28, (4), pp. 20052013.
    3. 3)
      • 3. Zaman, M.S., Wen, Y., Fernandes, R., et al: ‘A cell-level differential power processing IC for concentrating-PV systems with bidirectional hysteretic current-mode control and closed-loop frequency regulation’, IEEE Trans. Power Electron., 2015, 30, (12), pp. 72307244.
    4. 4)
      • 4. Shenoy, P.S., Kim, K.A., Johnson, B.B., et al: ‘Differential power processing for increased energy production and reliability of photovoltaic systems’, IEEE Trans. Ind. Power Electron., 2013, 28, (6), pp. 29682979.
    5. 5)
      • 5. Qin, S., Cady, S.T., García, A.D.D., et al: ‘A distributed approach to maximum power point tracking for photovoltaic submodule differential power processing’, IEEE Trans. Power Electron., 2015, 30, (4), pp. 20242040.
    6. 6)
      • 6. Qin, S., Barth, C.B., Podgurski, R.C.N.P.: ‘Enhancing microinverter energy capture with submodule differential power processing’, IEEE Trans. Power Electron., 2016, 31, (5), pp. 35753585.
    7. 7)
      • 7. Shimizu, T., Hashimoto, O., Kimura, G.: ‘A novel high-performance utility-interactive photovoltaic inverter system’, IEEE Trans. Power Electron., 2003, 18, (2), pp. 704711.
    8. 8)
      • 8. Shimizu, T., Hirakata, M., Kamezawa, T., et al: ‘Generation control circuit for photovoltaic modules’, IEEE Trans. Power Electron., 2001, 16, (3), pp. 293300.
    9. 9)
      • 9. Stauth, J.T., Seeman, M.D., Kesarwani, K.: ‘Resonant switched-capacitor converters for sub-module distributed photovoltaic power management’, IEEE Trans. Power Electron., 2013, 28, (3), pp. 11891198.
    10. 10)
      • 10. Uno, M., Kukita, A.: ‘PWM converter integrating switched capacitor converter and series-resonant voltage multiplier as equalizers for photovoltaic modules and series-connected energy storage cells for exploration rovers’, IEEE Trans. Power Electron., 2017, 32, (11), pp. 85008513.
    11. 11)
      • 11. Qiu, Z., Sun, K.: ‘A photovoltaic generation system based on wide voltage-gain DC–DC converter and differential power processors for DC microgrids’, Chin. J. Electr. Eng., 2017, 3, (1), pp. 8495.
    12. 12)
      • 12. Chang, A.H., Avestruz, A.T., Leeb, S.B.: ‘Capacitor-less photovoltaic cell-level power balancing using diffusion charge redistribution’, IEEE Trans. Power Electron., 2015, 30, (2), pp. 537546.
    13. 13)
      • 13. Du, J., Xu, R., Chen, X., et al: ‘A novel solar panel optimizer with self-compensation for partial shadow condition’. Proc. IEEE Applied Power Electronics Conf. Exposition APEC, Long beach, CA, USA, 2013, pp. 9296.
    14. 14)
      • 14. Uno, M., Kukita, A.: ‘Single-switch voltage equalizer using multistacked buck–boost converters for partially shaded photovoltaic modules’, IEEE Trans. Power Electron., 2015, 30, (6), pp. 30913105.
    15. 15)
      • 15. Uno, M., Kukita, A.: ‘Current sensorless equalization strategy for a single-switch voltage equalizer using multistacked buck–boost converters for photovoltaic modules under partial shading’, IEEE Trans. Ind. Appl., 2017, 53, (1), pp. 420429.
    16. 16)
      • 16. Uno, M., Kukita, A.: ‘Two-switch voltage equalizer using an LLC resonant inverter and voltage multiplier for partially shaded series-connected photovoltaic modules’, IEEE Trans. Ind. Appl., 2015, 51, (2), pp. 15871601.
    17. 17)
      • 17. Uno, M., Kukita, A.: ‘Single-switch single-magnetic PWM converter integrating voltage equalizer for partially shaded photovoltaic modules in standalone applications’, IEEE Trans. Power Electron., 2018, 33, (2), pp. 12591270.
    18. 18)
      • 18. Olalla, C., Clement, D., Rodríguez, M., et al: ‘Architectures and control of submodule integrated DC–DC converters for photovoltaic applications’, IEEE Trans. Power Electron., 2013, 28, (6), pp. 29802997.
    19. 19)
      • 19. Olalla, C., Deline, C., Clement, D., et al: ‘Performance of power-limited differential power processing architectures in mismatched PV systems’, IEEE Trans. Power Electron., 2015, 30, (2), pp. 618631.
    20. 20)
      • 20. Chu, G., Wen, H., Jiang, L., et al: ‘Bidirectional flyback based isolated-port submodule differential power processing optimizer for photovoltaic applications’, Sol. Energy, 2017, 158, pp. 929940.
    21. 21)
      • 21. Jeon, Y.T., Lee, H., Kim, K.A., et al: ‘Least power point tracking method for photovoltaic differential power processing systems’, IEEE Trans. Power Electron., 2017, 32, (3), pp. 19411951.
    22. 22)
      • 22. Cassani, P.A., Williamson, S.S.: ‘Design, testing, and validation of a simplified control scheme for a novel plug-in hybrid electric vehicle battery cell equalizer’, IEEE Trans. Ind. Electron., 2010, 57, (12), pp. 39563962.
    23. 23)
      • 23. Phung, T.H., Collet, A., Crebier, J.: ‘An optimized topology for next-to-next balancing of series-connected lithium-ion cells’, IEEE Trans. Power Electron., 2014, 29, (9), pp. 46034613.
    24. 24)
      • 24. Baughman, A., Ferdowsi, M.: ‘Double-tiered switched-capacitor battery charge equalization technique’, IEEE Trans. Ind. Appl., 2008, 55, (6), pp. 22772285.
    25. 25)
      • 25. Uno, M., Tanaka, K.: ‘Influence of high-frequency charge–discharge cycling induced by cell voltage equalizers on the life performance of lithium-ion cells’, IEEE Trans. Veh. Technol., 2011, 60, (4), pp. 15051515.
    26. 26)
      • 26. Yuanmao, Y., Cheng, K.W.E., Yeung, Y.P.B.: ‘Zero-current switching switched-capacitor zero-voltage-gap automatic equalization system for series battery string’, IEEE Trans. Power Electron., 2012, 27, (7), pp. 32343242.
    27. 27)
      • 27. Kim, M.Y., Kim, C.H., Kim, J.H., et al: ‘A chain structure of switched capacitor for improved cell balancing speed of lithium-ion batteries’, IEEE Trans. Ind. Electron., 2014, 61, (9), pp. 39893999.
    28. 28)
      • 28. Shang, Y., Xia, B., Lu, F., et al: ‘A switched-coupling-capacitor equalizer for series-connected battery strings’, IEEE Trans. Power Electron., 2017, 32, (10), pp. 76947706.
    29. 29)
      • 29. Li, S., Mi, C.C., Zhang, M.: ‘A high-efficiency active battery-balancing circuit using multiwinding transformer’, IEEE Trans. Ind. Appl., 2013, 49, (1), pp. 1983207.
    30. 30)
      • 30. Kutkut, N.H., Divan, D.M., Novotny, D.W.: ‘Charge equalization for series connected battery strings’, IEEE Trans. Ind. Appl., 1995, 31, (3), pp. 562568.
    31. 31)
      • 31. Uno, M., Tanaka, K.: ‘Single-switch cell voltage equalizer using multistacked buck–boost converters operating in discontinuous conduction mode for series-connected energy storage cells’, IEEE Trans. Veh. Technol., 2011, 60, (8), pp. 36353645.
    32. 32)
      • 32. Uno, M., Tanaka, K.: ‘Double-switch single-transformer cell voltage equalizer using a half-bridge inverter and a voltage multiplier for series-connected supercapacitors’, IEEE Trans. Veh. Technol., 2012, 61, (9), pp. 39203930.
    33. 33)
      • 33. Uno, M., Kukita, A.: ‘Double-switch equalizer using parallel- or series–parallel-resonant inverter and voltage multiplier for series-connected supercapacitors’, IEEE Trans. Power Electron., 2014, 29, (2), pp. 812828.
    34. 34)
      • 34. Uno, M., Kukita, A.: ‘Bidirectional PWM converter integrating cell voltage equalizer using series-resonant voltage multiplier for series-connected energy storage cells’, IEEE Trans. Power Electron., 2015, 30, (6), pp. 30773090.
    35. 35)
      • 35. Xu, A., Xie, S., Liu, X.: ‘Dynamic voltage equalization for series-connected ultracapacitors in EV/HEV applications’, IEEE Trans. Veh. Technol., 2009, 58, (8), pp. 39813987.
    36. 36)
      • 36. Arias, M., Sebastian, J., Hernando, M.M., et al: ‘Practical application of the wave-trap concept in battery–cell equalizers’, IEEE Trans. Power Electron., 2015, 30, (10), pp. 56165631.
    37. 37)
      • 37. Uno, M., Kukita, A.: ‘String-to-battery voltage equalizer based on a half-bridge converter with multistacked current doublers for series-connected batteries’, IEEE Trans. Power Electron., 2019, 34, (2), pp. 12861298.
    38. 38)
      • 38. Kim, C.H., Kim, M.Y., Park, H.S., et al: ‘A modularized two-stage charge equalizer with cell selection switches for series-connected lithium-ion battery string in an HEV’, IEEE Trans. Power Electron., 2012, 27, (8), pp. 37643774.
    39. 39)
      • 39. Kim, C.H., Kim, M.Y., Moon, G.W.: ‘A modularized charge equalizer using a battery monitoring IC for series-connected Li-ion battery strings in electric vehicles’, IEEE Trans. Power Electron., 2013, 28, (8), pp. 37793787.
    40. 40)
      • 40. Park, H.S., Kim, C.E., Kim, C.H., et al: ‘A modularized charge equalizer for an HEV lithium-ion battery string’, IEEE Trans. Ind. Electron., 2009, 56, (5), pp. 14641476.
    41. 41)
      • 41. Dong, B., Li, Y., Han, Y.: ‘Parallel architecture for battery charge equalization’, IEEE Trans. Power Electron., 2015, 30, (9), pp. 49064913.
    42. 42)
      • 42. Park, H.S., Kim, C.H., Park, K.B., et al: ‘Design of a charge equalizer based on battery modularization’, IEEE Trans. Veh. Technol., 2009, 58, (7), pp. 32163223.
    43. 43)
      • 43. Cao, J., Schofield, N., Emadi, A.: ‘Battery balancing methods: a comprehensive review’. Proc. IEEE Vehicle Power Propulsion Conf., Harbin, China, 2008, pp. 16.
    44. 44)
      • 44. Guo, K.Z., Bo, Z.C., Gui, L.R., et al: ‘Comparison and evaluation of charge equalization technique for series connected batteries’. Proc. IEEE Power Electronics Specialists Conf., Jeju, South Korea, 2006, pp. 16.
    45. 45)
      • 45. Andrade, A.M.S.S., Mattos, E., Schuch, L., et al: ‘Synthesis and comparative analysis of very high step-up DC–DC converters adopting coupled-inductor and voltage multiplier cells’, IEEE Trans. Power Electron., 2018, 33, (7), pp. 58805897.
    46. 46)
      • 46. Forouzesh, M., Shen, Y., Yari, K., et al: ‘High-efficiency high step-up DC–DC converter with dual coupled inductors for grid-connected photovoltaic systems’, IEEE Trans. Power Electron., 2018, 33, (7), pp. 59675982.
    47. 47)
      • 47. Siwakoti, Y.P., Blaabjerg, F.: ‘Single switch nonisolated ultra-step-up DC–DC converter with an integrated coupled inductor for high boost applications’, IEEE Trans. Power Electron., 2017, 32, (11), pp. 85448558.
    48. 48)
      • 48. Ye, Y., Cheng, K.W.E., Chen, S.: ‘A high step-up PWM DC–DC converter with coupled-inductor and resonant switched-capacitor’, IEEE Trans. Power Electron., 2017, 32, (10), pp. 77397749.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2018.6158
Loading

Related content

content/journals/10.1049/iet-pel.2018.6158
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address