http://iet.metastore.ingenta.com
1887

Family of transformerless pulse-width modulation converters integrating voltage equalisers for PV panels and energy storage modules

Family of transformerless pulse-width modulation converters integrating voltage equalisers for PV panels and energy storage modules

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In photovoltaic (PV) systems, partial shading on PV panels is known to decrease the energy yield significantly. In energy storage applications, voltage imbalance of series-connected energy storage devices may result in over-charging and over-discharging of some devices. Although these issues can be precluded by voltage equalisers, PV and energy storage systems are prone to complexity because, in addition to main converters, voltage equalisers are separately necessary. To simplify the PV and energy storage systems, four kinds of transformerless pulse-width modulation converters integrating voltage equalisers are proposed in this study. Four kinds of basic circuits, each containing a unique ‘switching cell’, are introduced as a foundation of integrated converters. Stacking multiple switching cells with respective basic circuit derives the proposed integrated converters. Fundamental operation analyses are performed for two representative topologies. Experimental verification tests were performed using prototypes for a PV panel and series-connected electric double-layer capacitors (EDLCs). With the integrated converters, the energy yield from the partially shaded PV panel was significantly increased, and EDLCs were charged with eliminating voltage imbalance. This study chiefly focuses on the generalisation, fundamental operation analysis, and experimental verification for the proposed circuit derivation concept rather than detailed analysis for individual topologies.

References

    1. 1)
      • 1. MacAlpine, S.M., Erickson, R.W., Brandemuehl, M.J.: ‘Characterization of power optimizer potential to increase energy capture in photovoltaic systems operating under nonuniform conditions’, IEEE Trans. Power Electron., 2013, 28, (6), pp. 29362945.
    2. 2)
      • 2. Bergveld, H.J., Büthker, D., Castello, C., et al: ‘Module-level DC/DC conversion for photovoltaic systems: the delta-conversion concept’, IEEE Trans. Power Electron., 2013, 28, (4), pp. 20052013.
    3. 3)
      • 3. Zaman, M.S., Wen, Y., Fernandes, R., et al: ‘A cell-level differential power processing IC for concentrating-PV systems with bidirectional hysteretic current-mode control and closed-loop frequency regulation’, IEEE Trans. Power Electron., 2015, 30, (12), pp. 72307244.
    4. 4)
      • 4. Shenoy, P.S., Kim, K.A., Johnson, B.B., et al: ‘Differential power processing for increased energy production and reliability of photovoltaic systems’, IEEE Trans. Ind. Power Electron., 2013, 28, (6), pp. 29682979.
    5. 5)
      • 5. Qin, S., Cady, S.T., García, A.D.D., et al: ‘A distributed approach to maximum power point tracking for photovoltaic submodule differential power processing’, IEEE Trans. Power Electron., 2015, 30, (4), pp. 20242040.
    6. 6)
      • 6. Qin, S., Barth, C.B., Podgurski, R.C.N.P.: ‘Enhancing microinverter energy capture with submodule differential power processing’, IEEE Trans. Power Electron., 2016, 31, (5), pp. 35753585.
    7. 7)
      • 7. Shimizu, T., Hashimoto, O., Kimura, G.: ‘A novel high-performance utility-interactive photovoltaic inverter system’, IEEE Trans. Power Electron., 2003, 18, (2), pp. 704711.
    8. 8)
      • 8. Shimizu, T., Hirakata, M., Kamezawa, T., et al: ‘Generation control circuit for photovoltaic modules’, IEEE Trans. Power Electron., 2001, 16, (3), pp. 293300.
    9. 9)
      • 9. Stauth, J.T., Seeman, M.D., Kesarwani, K.: ‘Resonant switched-capacitor converters for sub-module distributed photovoltaic power management’, IEEE Trans. Power Electron., 2013, 28, (3), pp. 11891198.
    10. 10)
      • 10. Uno, M., Kukita, A.: ‘PWM converter integrating switched capacitor converter and series-resonant voltage multiplier as equalizers for photovoltaic modules and series-connected energy storage cells for exploration rovers’, IEEE Trans. Power Electron., 2017, 32, (11), pp. 85008513.
    11. 11)
      • 11. Qiu, Z., Sun, K.: ‘A photovoltaic generation system based on wide voltage-gain DC–DC converter and differential power processors for DC microgrids’, Chin. J. Electr. Eng., 2017, 3, (1), pp. 8495.
    12. 12)
      • 12. Chang, A.H., Avestruz, A.T., Leeb, S.B.: ‘Capacitor-less photovoltaic cell-level power balancing using diffusion charge redistribution’, IEEE Trans. Power Electron., 2015, 30, (2), pp. 537546.
    13. 13)
      • 13. Du, J., Xu, R., Chen, X., et al: ‘A novel solar panel optimizer with self-compensation for partial shadow condition’. Proc. IEEE Applied Power Electronics Conf. Exposition APEC, Long beach, CA, USA, 2013, pp. 9296.
    14. 14)
      • 14. Uno, M., Kukita, A.: ‘Single-switch voltage equalizer using multistacked buck–boost converters for partially shaded photovoltaic modules’, IEEE Trans. Power Electron., 2015, 30, (6), pp. 30913105.
    15. 15)
      • 15. Uno, M., Kukita, A.: ‘Current sensorless equalization strategy for a single-switch voltage equalizer using multistacked buck–boost converters for photovoltaic modules under partial shading’, IEEE Trans. Ind. Appl., 2017, 53, (1), pp. 420429.
    16. 16)
      • 16. Uno, M., Kukita, A.: ‘Two-switch voltage equalizer using an LLC resonant inverter and voltage multiplier for partially shaded series-connected photovoltaic modules’, IEEE Trans. Ind. Appl., 2015, 51, (2), pp. 15871601.
    17. 17)
      • 17. Uno, M., Kukita, A.: ‘Single-switch single-magnetic PWM converter integrating voltage equalizer for partially shaded photovoltaic modules in standalone applications’, IEEE Trans. Power Electron., 2018, 33, (2), pp. 12591270.
    18. 18)
      • 18. Olalla, C., Clement, D., Rodríguez, M., et al: ‘Architectures and control of submodule integrated DC–DC converters for photovoltaic applications’, IEEE Trans. Power Electron., 2013, 28, (6), pp. 29802997.
    19. 19)
      • 19. Olalla, C., Deline, C., Clement, D., et al: ‘Performance of power-limited differential power processing architectures in mismatched PV systems’, IEEE Trans. Power Electron., 2015, 30, (2), pp. 618631.
    20. 20)
      • 20. Chu, G., Wen, H., Jiang, L., et al: ‘Bidirectional flyback based isolated-port submodule differential power processing optimizer for photovoltaic applications’, Sol. Energy, 2017, 158, pp. 929940.
    21. 21)
      • 21. Jeon, Y.T., Lee, H., Kim, K.A., et al: ‘Least power point tracking method for photovoltaic differential power processing systems’, IEEE Trans. Power Electron., 2017, 32, (3), pp. 19411951.
    22. 22)
      • 22. Cassani, P.A., Williamson, S.S.: ‘Design, testing, and validation of a simplified control scheme for a novel plug-in hybrid electric vehicle battery cell equalizer’, IEEE Trans. Ind. Electron., 2010, 57, (12), pp. 39563962.
    23. 23)
      • 23. Phung, T.H., Collet, A., Crebier, J.: ‘An optimized topology for next-to-next balancing of series-connected lithium-ion cells’, IEEE Trans. Power Electron., 2014, 29, (9), pp. 46034613.
    24. 24)
      • 24. Baughman, A., Ferdowsi, M.: ‘Double-tiered switched-capacitor battery charge equalization technique’, IEEE Trans. Ind. Appl., 2008, 55, (6), pp. 22772285.
    25. 25)
      • 25. Uno, M., Tanaka, K.: ‘Influence of high-frequency charge–discharge cycling induced by cell voltage equalizers on the life performance of lithium-ion cells’, IEEE Trans. Veh. Technol., 2011, 60, (4), pp. 15051515.
    26. 26)
      • 26. Yuanmao, Y., Cheng, K.W.E., Yeung, Y.P.B.: ‘Zero-current switching switched-capacitor zero-voltage-gap automatic equalization system for series battery string’, IEEE Trans. Power Electron., 2012, 27, (7), pp. 32343242.
    27. 27)
      • 27. Kim, M.Y., Kim, C.H., Kim, J.H., et al: ‘A chain structure of switched capacitor for improved cell balancing speed of lithium-ion batteries’, IEEE Trans. Ind. Electron., 2014, 61, (9), pp. 39893999.
    28. 28)
      • 28. Shang, Y., Xia, B., Lu, F., et al: ‘A switched-coupling-capacitor equalizer for series-connected battery strings’, IEEE Trans. Power Electron., 2017, 32, (10), pp. 76947706.
    29. 29)
      • 29. Li, S., Mi, C.C., Zhang, M.: ‘A high-efficiency active battery-balancing circuit using multiwinding transformer’, IEEE Trans. Ind. Appl., 2013, 49, (1), pp. 1983207.
    30. 30)
      • 30. Kutkut, N.H., Divan, D.M., Novotny, D.W.: ‘Charge equalization for series connected battery strings’, IEEE Trans. Ind. Appl., 1995, 31, (3), pp. 562568.
    31. 31)
      • 31. Uno, M., Tanaka, K.: ‘Single-switch cell voltage equalizer using multistacked buck–boost converters operating in discontinuous conduction mode for series-connected energy storage cells’, IEEE Trans. Veh. Technol., 2011, 60, (8), pp. 36353645.
    32. 32)
      • 32. Uno, M., Tanaka, K.: ‘Double-switch single-transformer cell voltage equalizer using a half-bridge inverter and a voltage multiplier for series-connected supercapacitors’, IEEE Trans. Veh. Technol., 2012, 61, (9), pp. 39203930.
    33. 33)
      • 33. Uno, M., Kukita, A.: ‘Double-switch equalizer using parallel- or series–parallel-resonant inverter and voltage multiplier for series-connected supercapacitors’, IEEE Trans. Power Electron., 2014, 29, (2), pp. 812828.
    34. 34)
      • 34. Uno, M., Kukita, A.: ‘Bidirectional PWM converter integrating cell voltage equalizer using series-resonant voltage multiplier for series-connected energy storage cells’, IEEE Trans. Power Electron., 2015, 30, (6), pp. 30773090.
    35. 35)
      • 35. Xu, A., Xie, S., Liu, X.: ‘Dynamic voltage equalization for series-connected ultracapacitors in EV/HEV applications’, IEEE Trans. Veh. Technol., 2009, 58, (8), pp. 39813987.
    36. 36)
      • 36. Arias, M., Sebastian, J., Hernando, M.M., et al: ‘Practical application of the wave-trap concept in battery–cell equalizers’, IEEE Trans. Power Electron., 2015, 30, (10), pp. 56165631.
    37. 37)
      • 37. Uno, M., Kukita, A.: ‘String-to-battery voltage equalizer based on a half-bridge converter with multistacked current doublers for series-connected batteries’, IEEE Trans. Power Electron., 2019, 34, (2), pp. 12861298.
    38. 38)
      • 38. Kim, C.H., Kim, M.Y., Park, H.S., et al: ‘A modularized two-stage charge equalizer with cell selection switches for series-connected lithium-ion battery string in an HEV’, IEEE Trans. Power Electron., 2012, 27, (8), pp. 37643774.
    39. 39)
      • 39. Kim, C.H., Kim, M.Y., Moon, G.W.: ‘A modularized charge equalizer using a battery monitoring IC for series-connected Li-ion battery strings in electric vehicles’, IEEE Trans. Power Electron., 2013, 28, (8), pp. 37793787.
    40. 40)
      • 40. Park, H.S., Kim, C.E., Kim, C.H., et al: ‘A modularized charge equalizer for an HEV lithium-ion battery string’, IEEE Trans. Ind. Electron., 2009, 56, (5), pp. 14641476.
    41. 41)
      • 41. Dong, B., Li, Y., Han, Y.: ‘Parallel architecture for battery charge equalization’, IEEE Trans. Power Electron., 2015, 30, (9), pp. 49064913.
    42. 42)
      • 42. Park, H.S., Kim, C.H., Park, K.B., et al: ‘Design of a charge equalizer based on battery modularization’, IEEE Trans. Veh. Technol., 2009, 58, (7), pp. 32163223.
    43. 43)
      • 43. Cao, J., Schofield, N., Emadi, A.: ‘Battery balancing methods: a comprehensive review’. Proc. IEEE Vehicle Power Propulsion Conf., Harbin, China, 2008, pp. 16.
    44. 44)
      • 44. Guo, K.Z., Bo, Z.C., Gui, L.R., et al: ‘Comparison and evaluation of charge equalization technique for series connected batteries’. Proc. IEEE Power Electronics Specialists Conf., Jeju, South Korea, 2006, pp. 16.
    45. 45)
      • 45. Andrade, A.M.S.S., Mattos, E., Schuch, L., et al: ‘Synthesis and comparative analysis of very high step-up DC–DC converters adopting coupled-inductor and voltage multiplier cells’, IEEE Trans. Power Electron., 2018, 33, (7), pp. 58805897.
    46. 46)
      • 46. Forouzesh, M., Shen, Y., Yari, K., et al: ‘High-efficiency high step-up DC–DC converter with dual coupled inductors for grid-connected photovoltaic systems’, IEEE Trans. Power Electron., 2018, 33, (7), pp. 59675982.
    47. 47)
      • 47. Siwakoti, Y.P., Blaabjerg, F.: ‘Single switch nonisolated ultra-step-up DC–DC converter with an integrated coupled inductor for high boost applications’, IEEE Trans. Power Electron., 2017, 32, (11), pp. 85448558.
    48. 48)
      • 48. Ye, Y., Cheng, K.W.E., Chen, S.: ‘A high step-up PWM DC–DC converter with coupled-inductor and resonant switched-capacitor’, IEEE Trans. Power Electron., 2017, 32, (10), pp. 77397749.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2018.6158
Loading

Related content

content/journals/10.1049/iet-pel.2018.6158
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address