Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Systematic approach to construct and assess power electronic conversion architectures using graph theory and its application in a fuel cell system

With the proliferation of renewable energy generations, power conversion systems (PCSs) are becoming much more complex; it is becoming challenging to search all possible power conversion architectures (PCAs) and find the best optimisation in terms of different objectives. Therefore, this study investigates a systematic approach to construct and evaluate PCAs using graph theory. First, the components in PCSs are graphically modelled as either nodes or edges. Then, a generalised PCA deduction methodology is proposed, and all possible PCAs can be mathematically deduced by modifying elements in adjacency matrices. For a fuel cell (FC) generation system, 45 possible PCAs are found with the proposed method. Furthermore, an evaluation methodology based on graph theory is proposed. The performance indices of the deduced PCAs, including costs, efficiency, and reliability, are calculated. Then, an optimisation approach is applied to finding the best architecture compromise, where the one with the shortest distance to the ideal architecture is considered the best architecture compromise. For the FC demo system, with the proposed assessment methodology, the best architecture compromise (dc-bus structure) is found among 45 possible architectures. Finally, the experimental platform, which adopts the dc-bus optimised architecture, is built and experimental results validate the architecture selection.

References

    1. 1)
      • 23. Kolar, J.W., Friedli, T., Krismer, F., et al: ‘Conceptualization and multiobjective optimization of the electric system of an airborne wind turbine’, IEEE J. Emerging Sel. Topics Power Electron., 2013, 1, (2), pp. 73103.
    2. 2)
      • 5. Zhang, W., Xu, D., Li, X., et al: ‘Seamless transfer control strategy for fuel cell uninterruptible power supply system’, IEEE Trans. Power Electron., 2013, 28, (2), pp. 717729.
    3. 3)
      • 26. Chai, S., Sekar, A.: ‘Graph theory application to deregulated power system’. Proc. 33rd Southeastern Symp. on System Theory, Athens, OH, 2001, pp. 117121.
    4. 4)
      • 15. Chen, S.X., Gooi, H.B.: ‘Jump and shift method for multi-objective optimization’, IEEE Trans. Ind. Electron., 2011, 58, (10), pp. 45384548.
    5. 5)
      • 28. Garg, R.K., Agrawal, V.P., Gupta, V.K.: ‘Selection of power plants by evaluation and comparison using graph theoretical methodology’, Int. J. Electr. Power Energy Syst., 2006, 28, (6), pp. 429435.
    6. 6)
      • 18. Schrittwieser, L., Kolar, J.W., Soeiro, T.B.: ‘99% efficient three-phase buck-type SiC MOSFET PFC rectifier minimizing life cycle cost in DC data centers’, CPSS Trans. Power Electron. Appl., 2017, 2, (1), pp. 4758.
    7. 7)
      • 25. Sayeekumar, N., Ahmed, K. S., Karthikeyan, S.P., et al: ‘Graph theory and its applications in power systems – a review’. 2015 Int. Conf. on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), Kumaracoil, 2015, pp. 154157.
    8. 8)
      • 8. Choung, S.H., Kwasinski, A.: ‘Multiple-input DC-DC converter topologies comparison’. 2008 34th Annual Conf. of IEEE Industrial Electronics, Orlando, FL, 2008, pp. 23592364.
    9. 9)
      • 3. Dragičević, T., Lu, X., Vasquez, J.C., et al: ‘DC microgrids – part II: a review of power architectures, applications, and standardization issues’, IEEE Trans. Power Electron., 2016, 31, (5), pp. 35283549.
    10. 10)
      • 12. Hernandez-Aramburo, C.A., Green, T.C., Mugniot, N.: ‘Fuel consumption minimization of a microgrid’, IEEE Trans. Ind. Appl., 2005, 41, (3), pp. 673681.
    11. 11)
      • 11. Shi, K., Li, H., Hu, C., et al: ‘Topology of super uninterruptible power supply with multiple energy sources’. 2015 9th Int. Conf. on Power Electronics and ECCE Asia (ICPE-ECCE Asia), Seoul, 2015, pp. 17421749.
    12. 12)
      • 19. Bjeletić, A., Corradini, L., Maksimović, D., et al: ‘Specifications-driven design space boundaries for point-of-load converters’. 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conf. and Exposition (APEC), Fort Worth, TX, 2011, pp. 11661173.
    13. 13)
      • 30. Smedley, K., Cuk, S.: ‘Switching flow-graph nonlinear modeling technique’, IEEE Trans. Power Electron., 1994, 9, (4), pp. 405413.
    14. 14)
      • 7. Balog, R.S., Krein, P.T.: ‘Bus selection in multibus DC microgrids’, IEEE Trans. Power Electron., 2011, 26, (3), pp. 860867.
    15. 15)
      • 29. Košt’álová, A., Carvalho, P.: ‘Towards self-healing in distribution networks operation: bipartite graph modelling for automated switching’, Electr. Power Syst. Res., 2011, 81, (1), pp. 5156.
    16. 16)
      • 22. Deblecker, O., Versèle, C., De Grève, Z., et al: ‘Multiobjective optimization of a power supply for space application using a flexible CAD tool’. 2013 15th European Conf. on Power Electronics and Applications (EPE), Lille, 2013, pp. 110.
    17. 17)
      • 2. Chen, Z., Guerrero, J.M., Blaabjerg, F.: ‘A review of the state of the art of power electronics for wind turbines’, IEEE Trans. Power Electron., 2009, 24, (8), pp. 18591875.
    18. 18)
      • 10. Xu, D., Li, H., Zhu, Y., et al: ‘High-surety microgrid: super uninterruptable power supply with multiple renewable energy sources’, Electr. Power Compon. Syst., 2015, 43, (8–10), pp. 839853.
    19. 19)
      • 21. Burkart, R.M., Kolar, J.W.: ‘Comparative life cycle cost analysis of Si and SiC PV converter systems based on advanced η–ρ–σ multiobjective optimization techniques’, IEEE Trans. Power Electron., 2017, 32, (6), pp. 43444358.
    20. 20)
      • 1. Zhang, W., Xu, D., Enjeti, P. N., et al: ‘Survey on fault-tolerant techniques for power electronic converters’, IEEE Trans. Power Electron., 2014, 29, (12), pp. 63196331.
    21. 21)
      • 9. Li, X., Zhang, W., Du, C., et al: ‘Investigation to power conversion topology for fuel cell power generation system’. 2010 Int. Power Electronics Conf. – ECCE ASIA, Sapporo, 2010, pp. 26372643.
    22. 22)
      • 6. Lindman, P., Thorsell, L.: ‘Applying distributed power modules in telecom systems’, IEEE Trans. Power Electron., 1996, 11, (2), pp. 365373.
    23. 23)
      • 27. Xie, N., Torelli, F., Bompard, E., et al: ‘A graph theory based methodology for optimal PMUs placement and multiarea power system state estimation’, Electr. Power Syst. Res., 2015, 119, pp. 2533.
    24. 24)
      • 17. Andersen, T.M., Zingerli, C.M., Krismer, F., et al: ‘Modeling and Pareto optimization of microfabricated inductors for power supply on chip’, IEEE Trans. Power Electron., 2013, 28, (9), pp. 44224430.
    25. 25)
      • 4. Liu, X., Wang, P., Loh, P.C.: ‘A hybrid AC/DC microgrid and its coordination control’, IEEE Trans. Smart Grid, 2011, 2, (2), pp. 278286.
    26. 26)
      • 32. Li, X., Zhang, W., Li, H., et al: ‘Power management unit with its control for a three-phase fuel cell power system without large electrolytic capacitors’, IEEE Trans. Power Electron., 2011, 26, (12), pp. 37663777.
    27. 27)
      • 14. Lefranc, P., Jannot, X., Dessante, P.: ‘Virtual prototyping and pre-sizing methodology for buck DC-DC converters using genetic algorithms’, IET Power Electron., 2012, 5, (1), pp. 4152.
    28. 28)
      • 13. Kwasinski, A.: ‘Quantitative evaluation of DC microgrids availability: effects of system architecture and converter topology design choices’, IEEE Trans. Power Electron., 2011, 26, (3), pp. 835851.
    29. 29)
      • 31. Zhang, B., Qiu, D.: ‘Sneak circuits in power converters: concept, principle and application’, CPSS Trans. Power Electron. Appl., 2017, 2, (1), pp. 6875.
    30. 30)
      • 24. Burkart, R.M., Kolar, J.W.: ‘Comparative η–ρ–σ Pareto optimization of Si and SiC multilevel dual-active-bridge topologies with wide input voltage range’, IEEE Trans. Power Electron., 2017, 32, (7), pp. 52585270.
    31. 31)
      • 20. Boillat, D.O., Krismer, F., Kolar, J.W.: ‘Design space analysis and ρ-η Pareto optimization of LC output filters for switch-mode AC power sources’, IEEE Trans. Power Electron., 2015, 30, (12), pp. 69066923.
    32. 32)
      • 16. Marxgut, C., Muhlethaler, J., Krismer, F., et al: ‘Multiobjective optimization of ultraflat magnetic components with PCB-integrated core’, IEEE Trans. Power Electron., 2013, 28, (7), pp. 35913602.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2018.6143
Loading

Related content

content/journals/10.1049/iet-pel.2018.6143
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address