Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Analysis and behavioural modelling of matching networks for resonant-operating capacitive wireless power transfer

This study introduces a two-port network-based behavioural modelling approach for resonant-operated capacitive wireless power transfer (WPT) systems. A simple, generic and unified modelling approach is developed to describe the behaviour of WPT systems, under changes of the source and load circuits, variations of the coupling interface and drifts of the components in the matching networks. The resultant model provides insights into the electrical cross-coupling relationships between input and output parameters of the capacitive power transfer systems, including the effect of distance and alignment of the coupling plates. Regardless of the circuit complexity, it is demonstrated that the model core can be reduced to a basic gyrator relationship with added coefficients when required, thus obtaining a compact, closed-form relationship between the input and output. To provide a simulation framework for capacitive medium variations, a simulation-compatible model of the capacitive coupling using a continuous-time variable capacitor has been constructed. The behavioural model and methodology have been validated through simulations and experiments. A 200 W experimental capacitive WPT prototype has been designed and examined for various air-gaps up to 100 mm at a resonant operation of 1.56 MHz. A very good agreement is obtained between the theoretical predictions, simulations, and experimental results.

References

    1. 1)
      • 13. Wu, K., Choudhury, D., Matsumoto, H.: ‘Wireless power transmission, technology, and applications’, Proc. IEEE, 2013, 101, pp. 12711275.
    2. 2)
      • 25. Lu, F., Zhang, H., Hofmann, H., et al: ‘An inductive and capacitive integrated coupler and its LCL compensation circuit design for wireless power transfer’, IEEE Trans. Ind. Appl., 2017, 53, (5), pp. 49034913.
    3. 3)
      • 49. Singer, S.: ‘Gyrators application in power processing circuits’, IEEE Trans. Ind. Electron., 1987, IE-34, (3), pp. 313318.
    4. 4)
      • 38. Chen, L., Liu, S., Zhou, Y., et al: ‘An optimizable circuit structure for high-efficiency wireless power transfer’, IEEE Trans. Ind. Electron., 2013, 60, (1), pp. 339349.
    5. 5)
      • 45. Sohn, Y.H., Choi, B.H., Cho, G.H., et al: ‘Gyrator-based analysis of resonant circuits in inductive power transfer systems’, IEEE Trans. Power Electron., 2016, 31, (10), pp. 68246843.
    6. 6)
      • 35. Maksimovic, D., Cuk, S.: ‘A unified analysis of PWM converters in discontinuous modes’, IEEE Trans. Power Electron., 1991, 6, (3), pp. 476490.
    7. 7)
      • 10. Bingyi, Z., Hongbin, L., Yisong, Z., et al: ‘Contactless electrical energy transmission system using separable transformer’. Proc. 8th Int. Conf. on Electrical Machines and Systems, Nanjing, China, 2005, vol. 3, pp. 17211724.
    8. 8)
      • 41. Yuan, Q., Chen, Q., Li, L., et al: ‘Numerical analysis on transmission efficiency of evanescent resonant coupling wireless power transfer system’, IEEE Trans. Antennas Propag., 2010, 58, (5), pp. 17511758.
    9. 9)
      • 29. Sinha, S., Kumar, A., Pervaiz, S., et al: ‘Design of efficient matching networks for capacitive wireless power transfer systems’. Proc. IEEE Workshop on Control and Modeling for Power Electronics (COMPEL), Trondheim, Norway, 2016, pp. 17.
    10. 10)
      • 6. Zhang, W., Zhang, T., Guo, Q., et al: ‘High-efficiency wireless power transfer system for 3D, unstationary free-positioning and multi-object charging’, IET Electr. Power Appl., 2018, 12, (5), pp. 658665.
    11. 11)
      • 56. Bartoli, M., Noferi, N., Reatti, A., et al: ‘Modeling Litz-wire winding losses in high-frequency power inductors’. Proc. IEEE Power Electronics Specialists Conf., Baveno, Italy, 1996, vol. 2, pp. 16901696.
    12. 12)
      • 53. DE2 development and education board user manual, Altera Corporation, 2006.
    13. 13)
      • 31. Pantic, Z., Sanzhong, B., Lukic, S.: ‘ZCS LCC-compensated resonant inverter for inductive-power-transfer application’, IEEE Trans. Ind. Electron., 2011, 58, (9), pp. 35003510.
    14. 14)
      • 23. Lu, F., Zhang, H., Hofmann, H., et al: ‘A double-sided LC compensation circuit for loosely-coupled capacitive power transfer’, IEEE Trans. Power Electron., 2017, 33, (2), pp. 16331643.
    15. 15)
      • 17. Musavi, F., Eberle, W.: ‘Overview of wireless power transfer technologies for electric vehicle battery charging’, IET Power Electron., 2014, 7, (1), pp. 6066.
    16. 16)
      • 46. Cid-Pastor, A., Martinez-Salamero, L., Alonso, C., et al: ‘Paralleling DC–DC switching converters by means of power gyrators’, IEEE Trans. Power Electron., 2007, 22, (6), pp. 24442453.
    17. 17)
      • 30. Kumar, A., Sinha, S., Sepahvand, A., et al: ‘Improved design optimization for high-efficiency matching networks’, IEEE Trans. Power Electron., 2018, 33, (1), pp. 3750.
    18. 18)
      • 54. Texas Instrument: ‘LMG5200 80-V, 10-A GaN half-bridge power stage’. Available at http://www.ti.com/lit/ds/symlink/lmg5200.pdf, accessed March 2017.
    19. 19)
      • 50. Steigerwald, R.L.: ‘A comparison of half-bridge resonant converter topologies’, IEEE Trans. Power Electron., 1988, 3, (2), pp. 174182.
    20. 20)
      • 7. Kamiya, Y., Nakamura, T., Sato, T., et al: ‘Development and performance evaluation of advanced electric micro bus equipped with non-contact inductive rapid-charging system’. Proc. 23rd Int. EVS, Electric/Hybrid-Electric Session, Anaheim, CA, USA, 2007, pp. 114.
    21. 21)
      • 19. Lu, F., Zhang, H., Hofmann, H., et al: ‘A double-sided LCLC compensated capacitive power transfer system for electric vehicle charging’, IEEE Trans. Power Electron., 2015, 30, (11), pp. 60116014.
    22. 22)
      • 26. Lim, Y., Tang, H., Lim, S., et al: ‘An adaptive impedance-matching network based on a novel capacitor matrix for wireless power transfer’, IEEE Trans. Power Electron., 2014, 29, (8), pp. 44034413.
    23. 23)
      • 3. Langlotz, T, Nguyen, T., Schmalstieg, D., et al: ‘Next generation augmented reality browsers: rich, seamless, and adaptive’, Proc. IEEE, 2014, 102, pp. 155169.
    24. 24)
      • 48. Singer, S.: ‘Loss-free gyrator realization’, IEEE Trans. Circuits Syst., 1988, 35, (1), pp. 2634.
    25. 25)
      • 44. Evzelman, M., Peretz, M.M.: ‘Optimal design of a class-E resonant driver’, IET Power Electron., 2015, 8, (8), pp. 15521557.
    26. 26)
      • 4. Sallan, J., Villa, J.L., Llombart, A., et al: ‘Optimal design of ICPT systems applied to electric vehicle battery charge’, IEEE Trans. Ind. Electron., 2009, 56, (6), pp. 21402149.
    27. 27)
      • 12. Jaegue, S., Seungyong, S., Yangsu, K., et al: ‘Design and implementation of shaped magnetic resonance-based wireless power transfer system for roadway-powered moving electric vehicles’, IEEE Trans. Ind. Electron., 2014, 61, (3), pp. 11791192.
    28. 28)
      • 52. Ben-Yaakov, S., Peretz, M.M.: ‘Simulation bits: a SPICE behavioral model of non-linear inductors’, IEEE Power Electron. Soc. Newslett, Fourth Quarter, 2003, 15, (4), pp. 910.
    29. 29)
      • 21. Lu, F., Zhang, H., Hofmann, H., et al: ‘A loosely coupled capacitive power transfer system with LC compensation circuit topology’. Proc. IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 2016, pp. 15.
    30. 30)
      • 39. Wang, B., Yerazunis, W., Teo, K.H.: ‘Wireless power transfer: metamaterials and array of coupled resonators’, Proc. IEEE, 2013, 101, pp. 13591368.
    31. 31)
      • 24. Dai, J., Ludois, D.C.: ‘A survey of wireless power transfer and a critical comparison of inductive and capacitive coupling for small gap applications’, IEEE Trans. Power Electron/, 2015, 30, (11), pp. 60176029.
    32. 32)
      • 34. Vorperian, V., Tymerski, R., Lee, F.C.: ‘Equivalent circuit models for resonant and PWM switches’, IEEE Trans. Power Electron., 1989, 4, (2), pp. 205214.
    33. 33)
      • 9. Xu, D., Han, L., Tan, M., et al: ‘Ceiling-based visual positioning for an indoor mobile robot with monocular vision’, IEEE Trans. Ind. Electron., 2009, 56, (5), pp. 16171628.
    34. 34)
      • 42. Cheon, S., Kim, Y.H., Kang, S.Y., et al: ‘Circuit-model-based analysis of a wireless energy-transfer system via coupled magnetic resonances’, IEEE Trans. Ind. Electron., 2011, 58, (7), pp. 29062914.
    35. 35)
      • 11. Li, S., Mi, C.: ‘Wireless power transfer for electric vehicle applications’, IEEE J. Emerging Sel. Top. Power Electron., 2014, 3, (1), pp. 417.
    36. 36)
      • 40. Christ, A., Douglas, M.G., Roman, J.M., et al: ‘Evaluation of wireless resonant power transfer systems with human electromagnetic exposure limits’, IEEE Trans. Electromagn. Compat., 2013, 55, (2), pp. 265274.
    37. 37)
      • 43. Lin, C., Lee, F.: ‘Design of a piezoelectric transformer converter and its matching networks’. Proc. IEEE Power Electronics Specialist Conf. (PESC'94), Taipei, Taiwan, 1994, vol. 1, pp. 607612.
    38. 38)
      • 18. Theodoridis, M.P.: ‘Effective capacitive power transfer’, IEEE Trans. Power Electron., 2012, 27, (12), pp. 49064913.
    39. 39)
      • 55. Craninckx, J., Steyaert, M.: ‘A 1.8-GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors’, IEEE J. Solid-State Circuits, 1997, 32, (5), pp. 736744.
    40. 40)
      • 22. Lu, F., Zhang, H., Mi, C.: ‘A two-plate capacitive wireless power transfer system for electric vehicle charging applications’, IEEE Trans. Power Electron., 2017, 33, (2), pp. 946969.
    41. 41)
      • 33. Hao, H., Covic, G.A., Boys, J.T.: ‘An approximate dynamic model of LCL-T-based inductive power transfer power supplies’, IEEE Trans. Power Electron., 2014, 29, (10), pp. 55545567.
    42. 42)
      • 27. Beh, T.C., Kato Imura, M.T., Oh, S., et al: ‘Automated impedance matching system for robust wireless power transfer via magnetic resonance coupling’, IEEE Trans. Ind. Electron., 2013, 60, (9), pp. 36893698.
    43. 43)
      • 14. Collins, L.: ‘Cut the cord’, IET J. Mag., 2007, 5, (6), pp. 4246.
    44. 44)
      • 36. Lu, J., Kumar, A., Afridi, K.K.: ‘A step-superposition based analysis approach to modeling resonant converters’, IEEE Trans. Power Electron., 2018, 33, (8), pp. 71487165.
    45. 45)
      • 5. Yin, D., Oh, S., Hori, Y.: ‘A novel traction control for EV based on maximum transmissible torque estimation’, IEEE Trans. Ind. Electron., 2009, 56, (6), pp. 20862094.
    46. 46)
      • 2. Si, P., Hu, A.P., Malpas, S., et al: ‘A frequency control method for regulating wireless power to implantable devices’, IEEE Trans. Biomed. Circuits Syst., 2008, 2, pp. 2229.
    47. 47)
      • 32. Witulski, A., Erickson, R.W.: ‘Extension of state-space averaging to resonant switches and beyond’, IEEE Trans. Power Electron., 1990, 5, (1), pp. 98109.
    48. 48)
      • 8. Mostefai, L., Denai, M., Sehoon, O., et al: ‘Optimal control design for robust fuzzy friction compensation in a robot joint’, IEEE Trans. Ind. Electron., 2009, 56, (10), pp. 38323839.
    49. 49)
      • 20. Zhang, H., Lu, F., Hofmann, H., et al: ‘A four-plate compact capacitive coupler design and LCL-compensated topology for capacitive power transfer in electric vehicle charging application’, IEEE Trans. Power Electron., 2016, 31, (12), pp. 85418551.
    50. 50)
      • 37. Anderson, C.J., Lyle, J.A.: ‘Technique for evaluating system performance using Q in numerical simulation exhibiting inter symbol interference’, Electron. Lett., 1994, 30, (1), pp. 7172.
    51. 51)
      • 28. Zhang, W., Mi, C.: ‘Compensation topologies for high power wireless power transfer systems’, IEEE Trans. Veh. Technol., 2015, 65, (6), pp. 47684778.
    52. 52)
      • 16. Hui, S.Y.R., Zhong, W., Lee, C.K.: ‘A critical review of recent progress in mid-range wireless power transfer’, IEEE Trans. Power Electron., 2014, 29, (9), pp. 45004511.
    53. 53)
      • 1. Imura, T., Hori, Y.: ‘Maximizing air gap and efficiency of magnetic resonant coupling for wireless power transfer using equivalent circuit and Neumann formula’, IEEE Trans. Ind. Electron., 2011, 58, (10), pp. 47464752.
    54. 54)
      • 47. Hamill, D.C.: ‘Lumped equivalent circuits of magnetic components: the gyrator–capacitor approach’, IEEE Trans. Power Electron., 1993, 8, (2), pp. 97103.
    55. 55)
      • 15. Valente, V., Eder, C., Donaldson, N., et al: ‘A high-power CMOS class-D amplifier for inductive link medical transmitters’, IEEE Trans. Power Electron., 2015, 30, (8), pp. 44774488.
    56. 56)
      • 51. Hayes, J.G., Egan, M.G.: ‘Rectifier-compensated fundamental mode approximation analysis of the series parallel LCLC family of resonant converters with capacitive output filter and voltage-source load’. Proc. IEEE Power Electronics Specialists Conf. (PESC), Charleston, SC, USA, 1999, vol. 2, pp. 10301036.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2018.6136
Loading

Related content

content/journals/10.1049/iet-pel.2018.6136
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address