Design and implementation of a novel nine-level MT-MLI with a self-voltage-balancing switching technique

Design and implementation of a novel nine-level MT-MLI with a self-voltage-balancing switching technique

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, a novel nine-level modified T-type multilevel inverter (MT-MLI) with a simple capacitor balancing technique is proposed. The proposed MT-MLI circuit can generate higher levels with a single DC source and the minimum number of switching components. Each phase of the proposed topology contains ten switches and one flying capacitor (FC). The DC source voltage is divided into two parts with the help of capacitors. Phase disposition-sine pulse-width modulation technique is employed to regulate the DC-link capacitors and FC voltages. To reduce the control complexity of FC-based circuits, quarter-cycle selector is introduced to control the FC voltage within the given half fundamental cycle using redundant states, so an external capacitor charging setup is not required. Furthermore, to highlight the potential merits of the proposed MT-MLI, the comparison is made among state-of-the-art MLIs. Simulation verification of the MT-MLI is done using MATLAB/Simulink, and then hardware verifications are done using the laboratory prototype setup with Opal-RT controller. Finally, adequate results are presented to validate the proposed MT-MLI.


    1. 1)
      • 1. Rodriguez, J., Bernet, S., Steimer, P.K., et al: ‘A survey on neutral-point-clamped inverters’, IEEE Trans. Ind. Electron., 2010, 57, (7), pp. 22192230.
    2. 2)
      • 2. Rodriguez, J., Lai, J.S., Peng, F.Z.: ‘Multilevel inverters: a survey of topologies, controls, and applications’, IEEE Trans. Ind. Electron., 2002, 49, (4), pp. 724738.
    3. 3)
      • 3. Lee, S.S., Sidorov, M., Lim, C.S., et al: ‘Hybrid cascaded multilevel inverter (HCMLI) with improved symmetrical 4-level submodule’, IEEE Trans. Power Electron., 2018, 33, (2), pp. 932935.
    4. 4)
      • 4. Wang, K., Xu, L., Zheng, Z., et al: ‘Capacitor voltage balancing of a five-level ANPC converter using phase-shifted PWM’, IEEE Trans. Power Electron., 2015, 30, (3), pp. 11471156.
    5. 5)
      • 5. Kouro, S., Malinowski, M., Gopakumar, K., et al: ‘Recent advances and industrial applications of multilevel converters’, IEEE Trans. Ind. Electron., 2010, 57, (8), pp. 25532580.
    6. 6)
      • 6. Takeshita, T., Matsui, N.: ‘PWM control and input characteristics of three-phase multi-level ac/dc converter’. 23rd Annual IEEE Power Electronics Specialists Conf. 1992 PESC'92 Record, Toledo, Spain, 1992, pp. 175180.
    7. 7)
      • 7. Schweizer, M., Kolar, J.W.: ‘Design and implementation of a highly efficient three-level T-type converter for low-voltage applications’, IEEE Trans. Power Electron., 2013, 28, (2), pp. 899907.
    8. 8)
      • 8. Liu, J., Wu, J., Zeng, J.: ‘Symmetric/asymmetric hybrid multilevel inverters integrating switched-capacitor techniques’, IEEE J. Emerg. Sel. Top. Power Electron., 2018, 6, (3), pp. 16161626.
    9. 9)
      • 9. Soeiro, T.B., Carballo, R., Moia, J., et al: ‘Three-phase five-level active-neutral-point-clamped converters for medium voltage applications’. 2013 Brazilian Power Electronics Conf. (COBEP), Gramado, Brazil, 2013, pp. 8591.
    10. 10)
      • 10. Wang, K., Zheng, Z., Wei, D., et al: ‘Topology and capacitor voltage balancing control of a symmetrical hybrid nine-level inverter for high-speed motor drives’, IEEE Trans. Ind. Appl., 2017, 53, (6), pp. 55635572.
    11. 11)
      • 11. Sadigh, A.K., Dargahi, V., Corzine, K.A.: ‘New active capacitor voltage balancing method for flying capacitor multicell converter based on logic-form-equations’, IEEE Trans. Ind. Electron., 2017, 64, (5), pp. 34673478.
    12. 12)
      • 12. Nair, V., Kaarthik, R.S., Kshirsagar, A., et al: ‘Generation of higher number of voltage levels by stacking inverters of lower multilevel structures with low voltage devices for drives’, IEEE Trans. Power Electron., 2017, 32, (1), pp. 5259.
    13. 13)
      • 13. Dao, N.D., Lee, D.C.: ‘Operation and control scheme of a five-level hybrid inverter for medium voltage motor drives’, IEEE Trans. Power Electron., 2018, 33, (12), pp. 1017810187.
    14. 14)
      • 14. Thielemans, S., Ruderman, A., Reznikov, B., et al: ‘Improved natural balancing with modified phase shifted PWM for single-leg five-level flying-capacitor converters’, IEEE Trans. Power Electron., 2012, 27, (4), pp. 16581667.
    15. 15)
      • 15. Sadigh, A.K., Hosseini, S.H., Sabahi, M., et al: ‘Double flying capacitor multicell converter based on modified phase-shifted pulse width modulation’, IEEE Trans. Power Electron., 2010, 25, (6), pp. 15171526.
    16. 16)
      • 16. McGrath, B.P., Holmes, D.G.: ‘Enhanced voltage balancing of a flying capacitor multilevel converter using phase disposition (PD) modulation’, IEEE Trans. Power Electron., 2011, 26, (7), pp. 19331942.
    17. 17)
      • 17. Chaudhuri, T., Rufer, A., Steimer, P.K.: ‘The common cross-connected stage for the 5 l ANPC medium voltage multilevel inverter’, IEEE Trans. Ind. Electron., 2010, 57, (7), pp. 22792286.
    18. 18)
      • 18. Khoshkbar-Sadigh, A., Dargahi, V., Corzine, K.: ‘New flying-capacitor-based multilevel converter with optimized number of switches and capacitors for renewable energy integration’, IEEE Trans. Energy Convers., 2016, 31, (3), pp. 846859.
    19. 19)
      • 19. Venkataramanaiah, J., Suresh, Y.: ‘Performance verification of a new cascaded transformer based multilevel inverter using modified carrier SPWM strategy’. 2018 Int. Conf. Power, Instrumentation, Control and Computing (PICC), Thrissur, India, 2018, pp. 16.
    20. 20)
      • 20. Drofenik, U., Kolar, J.W.: ‘A general scheme for calculating switching-and conduction-losses of power semiconductors in numerical circuit simulations of power electronic systems’. Proc. 2005 Int. Power Electronics Conf. (IPEC'05), Niigata, Japan, April 2005, pp. 48.
    21. 21)
      • 21. Barbosa, P., Steimer, P., Meysenc, L., et al: ‘Active neutral-point-clamped multilevel converters’. IEEE 36th Power Electronics Specialists Conf. 2005 PESC'05, Recife, Brazil, 2005, pp. 22962301.
    22. 22)
      • 22. Li, J., Bhattacharya, S., Huang, A.Q.: ‘A new nine-level active NPC (ANPC) converter for grid connection of large wind turbines for distributed generation’, IEEE Trans. Power Electron., 2011, 26, (3), pp. 961972.
    23. 23)
      • 23. Sandeep, N., Yaragatti, U.R.: ‘Operation and control of an improved hybrid nine-level inverter’, IEEE Trans. Ind. Appl., 2017, 53, (6), pp. 56765686.
    24. 24)
      • 24. Chaudhuri, T., Barbosa, P., Steimer, P., et al: ‘Cross-connected intermediate level (CCIL) voltage source inverter’. IEEE Power Electronics Specialists Conf. 2007 PESC 2007, Orlando, FL, USA, 2007, pp. 490496.
    25. 25)
      • 25. Rajeevan, P., Sivakumar, K., Gopakumar, K., et al: ‘A nine-level inverter topology for medium-voltage induction motor drive with open-end stator winding’, IEEE Trans. Ind. Electron., 2013, 60, (9), pp. 36273636.

Related content

This is a required field
Please enter a valid email address