access icon free CCM and DCM analysis of ASC-qZSIs

A novel active-switched-capacitor/inductor quasi-Z-source inverter (ASC-qZSI) with an anti-parallel switch which allows discontinuous conduction mode (DCM) was proposed. The analysis of the continuous conduction mode (CCM) and the DCM of the novel topology was also presented. Varying ASC-qZSI inductances and load conditions were found to lead to the two operational modes. The CCM/DCM boundary condition was derived. Detailed analysis of the voltage regulation capability, inductor current ripples, switching devices stresses, and converter loss were carried on for CCM and DCM. Simulation and experimental verification have been presented for the theoretical findings.

Inspec keywords: inductors; switching convertors; invertors; voltage control; capacitors

Other keywords: operational modes; load conditions; continuous conduction mode; CCM analysis; voltage regulation capability; DCM analysis; converter loss; ASC-qZSI; detailed analysis; antiparallel switch; DCM boundary condition; CCM boundary condition; inductor current ripples; active-switched-capacitor-inductor quasi-Z-source inverter; switching devices stresses; discontinuous conduction mode

Subjects: Inductors and transformers; Power electronics, supply and supervisory circuits; Capacitors; Voltage control; Control of electric power systems

References

    1. 1)
      • 25. Zhang, S., Zhao, M., Wu, X., et al: ‘Current-balance method for multi-phase DC–DC buck converters with wide duty ratio applications in both CCM and DCM’, Electron. Lett., 2017, 53, pp. 10621064.
    2. 2)
      • 18. Li, C., Yang, F., Cao, Y., et al: ‘Two-phase interleaved boost PFC converter with coupled inductor under single-phase operation’. 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 2018, pp. 606613.
    3. 3)
      • 6. Miaosen, S., Fang Zheng, P.: ‘Operation modes and characteristics of the Z-source inverter with small inductance or low power factor’, IEEE Trans. Ind. Electron., 2008, 55, pp. 8996.
    4. 4)
      • 17. Yao, K., Mao, C., Chen, K., et al: ‘Adequate usage rate control of switching cycles for DCM buck PFC converter’, IEEE J. Emerging Sel. Topics Power Electron., 2018, pp. 11, doi: 10.1109/JESTPE.2018.2882585.
    5. 5)
      • 3. Anderson, J., Peng, F.: ‘Four quasi-Z-source inverters’. 2008 IEEE Power Electronics Specialists Conf., 2008. PESC, Rhodes, Greece, 2008, pp. 2743–2749.
    6. 6)
      • 15. Paduvalli, V.V., Taylor, R.J., Hunt, L.R., et al: ‘Mitigation of positive zero effect on nonminimum phase boost DC–DC converters in CCM’, IEEE Trans. Ind. Electron., 2018, 65, pp. 41254134.
    7. 7)
      • 19. Dong, S., Zhang, Q., Cheng, S.: ‘Analysis of critical inductance and capacitor voltage ripple for a bidirectional Z-source inverter’, IEEE Trans. Power Electron., 2015, 30, pp. 40094015.
    8. 8)
      • 22. Poh Chiang, L., Vilathgamuwa, D.M., Yue Sen, L., et al: ‘Pulse-width modulation of Z-source inverters’, IEEE Trans. Power Electron., 2005, 20, pp. 13461355.
    9. 9)
      • 16. Zhou, Y., Ren, X., Guo, Z., et al: ‘A more accurate variable on-time control for CRM flyback PFC converters’. 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 2018, pp. 16.
    10. 10)
      • 4. Ahmad, A., Bussa, V.K., Singh, R.K., et al: ‘Switched-boost-modified Z-source inverter topologies with improved voltage gain capability’, IEEE J. Emerging Sel. Topics Power Electron., 2018, 6, pp. 22272244.
    11. 11)
      • 9. Sajadian, S., Ahmadi, R., Zargarzadeh, H.: ‘Extremum seeking-based model predictive MPPT for grid-tied Z-source inverter for photovoltaic systems’, IEEE J. Emerging Sel. Topics Power Electron., 2019, 7, pp. 216227.
    12. 12)
      • 14. Ayachit, A., Kazimierczuk, M.K.: ‘Averaged small-signal model of PWM DC-DC converters in CCM including switching power loss’, IEEE Trans. Circuits Syst. II, Express Briefs, 2019, 66, pp. 262266.
    13. 13)
      • 21. Liqiang, Y., Dongyuan, Q., Bo, Z., et al: ‘High-performance quasi-Z-source inverter with low capacitor voltage stress and small inductance’, IET Power Electron., 2015, 8, pp. 10611067.
    14. 14)
      • 1. Fang Zheng, P.: ‘Z-source inverter’, IEEE Trans. Ind. Appl., 2003, 39, pp. 504510.
    15. 15)
      • 20. Xinping, D., Zhaoming, Q., Shuitao, Y., et al: ‘A high-performance Z-source inverter operating with small inductor at wide-range load’. APEC 2007 - Twenty Second Annual IEEE Applied Power Electronics Conf., Anaheim, CA, USA, 2007, pp. 615620.
    16. 16)
      • 23. Yushan, L., Baoming, G., Abu-Rub, H., et al: ‘Overview of space vector modulations for three-phase Z-source/quasi-Z-source inverters’, IEEE Trans. Power Electron., 2014, 29, pp. 20982108.
    17. 17)
      • 24. Jia, M., Sun, Z., Siek, L.: ‘A novel zero-voltage-detector for buck converter in discontinuous conduction mode (DCM)’. 2018 IEEE 4th Southern Power Electronics Conf. (SPEC), Singapore, Singapore, 2018, pp. 14.
    18. 18)
      • 11. Aleem, Z., Winberg, S., Iqbal, A., et al: ‘Single-Phase transformer based HF-isolated Z- source inverters with voltage clamping techniques for solar PV applications’, IEEE Trans. Ind. Electron., 2019, pp. 11, doi: 10.1109/TIE.2018.2889615.
    19. 19)
      • 13. Ahmed, T., Mekhilef, S.: ‘Semi-Z-source inverter topology for grid-connected photovoltaic system’, IET Power Electron., 2015, 8, pp. 6375.
    20. 20)
      • 5. Anh-Vu, H., Tae-Won, C., Heung-Geun, K.: ‘Extended boost active-switched-capacitor/switched-inductor quasi-Z-source inverters’, IEEE Trans. Power Electron., 2015, 30, pp. 56815690.
    21. 21)
      • 7. Haiping, X., Peng, F.Z., Lihua, C., et al: ‘Analysis and design of Bi-directional Z-source inverter for electrical vehicles’. 2008. Twenty-Third Annual IEEE Applied Power Electronics Conf. and Exposition, 2008. APEC, Anaheim, CA, USA, 2008, pp. 12521257.
    22. 22)
      • 12. Daouda, M., Trovao, J.P., Rubio, R.G., et al: ‘Comparison of bidirectional quasi Z-source- and bidirectional conventional two-stage-inverter for electric traction system’. 2018 IEEE Vehicle Power and Propulsion Conf. (VPPC), Chicago, IL, USA, 2018, pp. 16.
    23. 23)
      • 2. Siwakoti, Y.P., Peng, F.Z., Blaabjerg, F., et al: ‘Impedance-source networks for electric power conversion part I: a topological review’, IEEE Trans. Power Electron., 2015, 30, pp. 699716.
    24. 24)
      • 8. Zhang, Y., Liu, Q., Gao, Y., et al: ‘Hybrid switched-capacitor/switched-quasi-Z-source bidirectional DC–DC converter with a wide voltage gain range for hybrid energy sources EVs’, IEEE Trans. Ind. Electron., 2019, 66, pp. 26802690.
    25. 25)
      • 10. Ramírez, R.O., Espinoza, J.R., Baier, C.R., et al: ‘Finite-state model predictive control with integral action applied to a single-phase Z-source inverter’, IEEE J. Emerging Sel. Topics Power Electron., 2019, 7, pp. 228239.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2018.6049
Loading

Related content

content/journals/10.1049/iet-pel.2018.6049
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading