Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free High-voltage gain SEPIC-based DC–DC converter without coupled inductor for PV systems

A new single-ended primary-inductor converter (SEPIC)-based DC–DC converter suitable for photovoltaic (PV) systems is introduced. The proposed converter has the advantage of continuous input current which reduces the input voltage ripple across the PV panels. Furthermore, it can provide a higher-voltage gain at smaller duty cycles when compared with counterpart SEPIC-based topologies which feature the absence of a coupled inductor. A smaller duty cycle for a given voltage gain translates to a lower-current ripple of the inductors, reduced conduction losses, and alleviated voltage stresses of the semiconductor switches. The proposed converter also benefits from a simpler structure and control scheme. The operational principles and the steady-state analysis are studied under both continuous conduction mode and discontinuous conduction mode. A comparative study between the proposed converter and seven counterpart topologies is also included. A laboratory prototype was built and tested. The experimental results are discussed in light of the theoretical analysis.

References

    1. 1)
      • 5. Ai, J., Lin, M.: ‘Ultra large gain step-up coupled-inductor DC–DC converter with an asymmetric voltage multiplier network for a sustainable energy system’, IEEE Trans. Power Electron., 2017, 32, (9), pp. 68966903.
    2. 2)
      • 33. Tang, Y., Fu, D., Wang, T., et al: ‘Hybrid switched-inductor converters for high step-up conversion’, IEEE Trans. Ind. Electron., 2015, 62, (3), pp. 14801490.
    3. 3)
      • 34. Luo, F.L., Ye, H.: ‘Positive output cascade boost converters’, IEE Proc. Electr. Power Appl., 2004, 151, (5), pp. 590606.
    4. 4)
      • 25. Andrade, A.M.S.S., Hey, H.L., da S. Martins, M.L.: ‘Non-pulsating input and output current Cúk, SEPIC, Zeta and forward converters for high-voltage step-up applications’, Electron. Lett., 2017, 53, (18), pp. 12761277.
    5. 5)
      • 20. Lee, S.-W., Do, H.-L.: ‘Zero-ripple input-current high-step-up boost–SEPIC DC–DC converter with reduced switch-voltage stress’, IEEE Trans. Power Electron., 2017, 32, (8), pp. 61706177.
    6. 6)
      • 15. Vinnikov, D., Roasto, I., Strzelecki, R., et al: ‘Step-up DC/DC converters with cascaded quasi-Z-source network’, IEEE Trans. Ind. Electron., 2012, 59, (10), pp. 37273736.
    7. 7)
      • 22. Hasanpour, S., Baghramian, A., Mojallali, H.: ‘A modified SEPIC-based high step-up DC–DC converter with quasi-resonant operation for renewable energy applications’, IEEE Trans. Ind. Electron., 2019, 66, (5), pp. 35393549.
    8. 8)
      • 17. Zhu, M., Luo, F.L.: ‘Series SEPIC implementing voltage-lift technique for DC–DC power conversion’, IET Power Electron., 2008, 1, (1), pp. 109121.
    9. 9)
      • 31. Jiao, Y., Luo, F.L., Zhu, M.: ‘Voltage-lift-type switched-inductor cells for enhancing DC–DC boost ability: principles and integrations in Luo converter’, IET Power Electron., 2011, 4, (1), pp. 131142.
    10. 10)
      • 8. Nguyen, M.-K., Lim, Y.-C., Choi, J.-H., et al: ‘Isolated high step-up DC–DC converter based on quasi-switched-boost network’, IEEE Trans. Ind. Electron., 2016, 63, (12), pp. 75537562.
    11. 11)
      • 16. Luo, F.L.: ‘Six self-lift DC–DC converters, voltage lift technique’, IEEE Trans. Ind. Electron., 2001, 48, (6), pp. 12681272.
    12. 12)
      • 10. Zhu, X., Zhang, B., Li, Z., et al: ‘Extended switched-boost DC–DC converters adopting switched-capacitor/switched-inductor cells for high step-up conversion’, IEEE J. Emerg. Sel. Top. Power Electron., 2017, 5, (3), pp. 10201030.
    13. 13)
      • 3. Freitas, A.A.A., Antunes, F.L.M., Daher, S., et al: ‘High-voltage gain dc–dc boost converter with coupled inductors for photovoltaic systems’, IET Power Electron., 2015, 8, (10), pp. 18851892.
    14. 14)
      • 27. Di Capua, G., Femia, N.: ‘A critical investigation of coupled inductors SEPIC design issues’, IEEE Trans. Ind. Electron., 2014, 61, (6), pp. 27242734.
    15. 15)
      • 28. Yao, J., Abramovitz, A., Smedley, K.M.: ‘Analysis and design of charge pump-assisted high step-up tapped inductor SEPIC converter with an ‘inductorless’ regenerative Snubber’, IEEE Trans. Power Electron., 2015, 30, (10), pp. 55655580.
    16. 16)
      • 9. Forouzesh, M., Shen, Y., Yari, K., et al: ‘High-efficiency high step-up DC–DC converter with dual coupled inductors for grid-connected photovoltaic systems’, IEEE Trans. Power Electron., 2018, 33, (7), pp. 59675982.
    17. 17)
      • 19. Andrade, A.M.S.S., Mattos, E., Schuch, L., et al: ‘Synthesis and comparative analysis of very high step-up DC–DC converters adopting coupled-inductor and voltage multiplier cells’, IEEE Trans. Power Electron., 2018, 33, (7), pp. 58805897.
    18. 18)
      • 24. Ardi, H., Ajami, A.: ‘Study on a high voltage gain SEPIC-based DC–DC converter with continuous input current for sustainable energy applications’, IEEE Trans. Power Electron., 2018, 33, (12), pp. 1040310409.
    19. 19)
      • 23. Baddipadiga, B.P., Ferdowsi, M.: ‘A high-voltage-gain dc–dc converter based on modified Dickson charge pump voltage multiplier’, IEEE Trans. Power Electron., 2017, 32, (10), pp. 77077715.
    20. 20)
      • 18. Zhang, X., Green, T.C.: ‘The modular multilevel converter for high step-up ratio DC–DC conversion’, IEEE Trans. Ind. Electron., 2015, 62, (8), pp. 49254936.
    21. 21)
      • 21. Moradpour, R., Ardi, H., Tavakoli, A.: ‘Design and implementation of a new SEPIC-based high step-up DC/DC converter for renewable energy applications’, IEEE Trans. Ind. Electron., 2018, 65, (2), pp. 12901297.
    22. 22)
      • 29. Abramovitz, A., Smedley, K., Yao, J.: ‘Derivation of a family of high step-up tapped inductor SEPIC converters’, Electron. Lett., 2014, 50, (22), pp. 16261628.
    23. 23)
      • 1. Chen, W.-L., Lin, J.-S.: ‘One-dimensional optimization for proportional–resonant controller design against the change in source impedance and solar irradiation in PV systems’, IEEE Trans. Ind. Electron., 2014, 61, (4), pp. 18451854.
    24. 24)
      • 14. Lee, S.-W., Do, H.-L.: ‘High step-up coupled-inductor cascade boost DC–DC converter with lossless passive Snubber’, IEEE Trans. Ind. Electron., 2018, 65, (10), pp. 77537761.
    25. 25)
      • 30. Kazimierczuk, M.K.: ‘Pulse-width modulated DC–DC power converters’ (John Wiley & Sons, USA, 2015).
    26. 26)
      • 26. Park, K.-B., Moon, G.-W., Youn, M.-J.: ‘Nonisolated high step-up boost converter integrated with sepic converter’, IEEE Trans. Power Electron., 2010, 25, (9), pp. 22662275.
    27. 27)
      • 7. Evran, F., Aydemir, M.T.: ‘Isolated high step-up DC–DC converter with low voltage stress’, IEEE Trans. Power Electron., 2014, 29, (7), pp. 35913603.
    28. 28)
      • 6. Liang, T.-J., Lee, J.-H., Chen, S.-M., et al: ‘Novel isolated high-step-up DC–DC converter with voltage lift’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 14831491.
    29. 29)
      • 12. Axelrod, B., Berkovich, Y., Ioinovici, A.: ‘Switched-capacitor/switched-inductor structures for getting transformerless hybrid DC–DC PWM converters’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2008, 55, (2), pp. 687696.
    30. 30)
      • 4. Gules, R., dos Santos, W.M., dos Reis, F.A., et al: ‘A modified SEPIC converter with high static gain for renewable applications’, IEEE Trans. Power Electron., 2014, 29, (11), pp. 58605871.
    31. 31)
      • 11. Bi, H., Wang, P., Che, Y.: ‘A capacitor clamped H-type boost DC–DC converter with wide voltage-gain range for fuel cell vehicles’, IEEE Trans. Veh. Technol., 2019, 68, (1), pp. 276290.
    32. 32)
      • 32. Yang, L.-S., Liang, T.-J., Chen, J.-F.: ‘Transformerless DC–DC converters with high step-up voltage gain’, IEEE Trans. Ind. Electron., 2009, 56, (8), pp. 31443152.
    33. 33)
      • 13. Axelrod, B., Berkovich, Y., Ioinovici, A.: ‘Hybrid switched-capacitor – ĆUK/Zeta/sepic converters in step-up mode’. Proc. IEEE Int. Symp. Circuits and Systems, Kobe, Japan, May 2005, pp. 13101313.
    34. 34)
      • 2. Yang, J., Yu, D., Cheng, H., et al: ‘Dual-coupled inductors based high step-up DC/DC converter without input electrolytic capacitor for PV application’, IET Power Electron., 2017, 10, (6), pp. 646656.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2018.5940
Loading

Related content

content/journals/10.1049/iet-pel.2018.5940
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address