access icon free Inductive decoupling-based multi-channel LED driver without electrolytic capacitors

Light-emitting diode (LED) drivers in outdoor street lighting applications suffer from short-lifetime because of the prolonged exposure to harsh environmental conditions such as high operating temperature, high humidity etc. A long-lifetime multi-channel LED driver consisting of front-end AC–DC boost power factor correction (PFC) converter followed by a DC–DC power conversion stage with dimming capability for LED-based street light is proposed in this study. This LED driver uses an inductor-based auxiliary decoupling circuit at the output of the AC–DC converter for mitigating the double-line-frequency power ripple present in the DC bus. The inductive ripple power storage circuit has a longer lifetime than a conventional capacitive storage circuit which is usually implemented by electrolytic capacitors. A digital control method is proposed to realise the decoupling control along with PFC control by a single non-digital signal processor micro-controller ST STM32F103RBT6. The proposed LED driver for street lighting is analysed and validated on a 150 W test setup. A comparison of active decoupling AC–DC converters for eliminating secondary-harmonic power ripple is displayed.

Inspec keywords: driver circuits; power inductors; power factor correction; AC-DC power convertors; DC-DC power convertors; light emitting diodes; digital control; electrolytic capacitors; street lighting; microcontrollers

Other keywords: inductive decoupling-based multichannel LED driver; front-end AC–DC boost power factor correction converter; active decoupling AC–DC converters; harsh environmental conditions; DC bus; DC–DC power conversion stage; nondigital signal processor microcontroller ST STM32F103RBT6; secondary-harmonic power ripple; double-line-frequency power ripple; long-lifetime multichannel LED driver; power 150.0 W; digital control method; decoupling control; LED-based street light; PFC control; inductor-based auxiliary decoupling circuit; capacitive storage circuit; inductive ripple power storage circuit; outdoor street lighting applications; electrolytic capacitors; light-emitting diode drivers

Subjects: Microprocessors and microcomputers; Microprocessor chips; Light emitting diodes; AC-DC power convertors (rectifiers); Control of electric power systems; DC-DC power convertors; Control engineering computing; Lighting; Capacitors; Power electronics, supply and supervisory circuits

References

    1. 1)
      • 12. Tang, Y., Qin, Z., Blaabjerg, F., et al: ‘A dual voltage control strategy for single-phase PWM converters with power decoupling function’, IEEE Trans. Power Electron., 2015, 30, (12), pp. 70607071.
    2. 2)
      • 10. Wang, F., Li, L., Zhong, Y., et al: ‘Flyback-based three-port topologies for electrolytic capacitor-less LED drivers’, IEEE Trans. Ind. Electron., 2017, 64, (7), pp. 58185827.
    3. 3)
      • 16. Su, M., Pan, P., Long, X., et al: ‘An active power-decoupling method for single-phase AC–DC converters’, IEEE Trans. Ind. Inf., 2014, 10, (1), pp. 461468.
    4. 4)
      • 7. Zhong, Q.-C., Ming, W.-L., Cao, X., et al: ‘Reduction of DC-bus voltage ripples and capacitors for single-phase PWM-controlled rectifiers’. IECON 2012-38th Annual Conf. IEEE Industrial Electronics Society, IEEE, 2012, pp. 708713.
    5. 5)
      • 3. Wang, H., Blaabjerg, F.: ‘Reliability of capacitors for DC-link applications in power electronic converters–an overview’, IEEE Trans. Ind. Appl., 2014, 50, (5), pp. 35693578.
    6. 6)
      • 6. Gorla, N.B.Y., Kolluri, S., Das, P., et al: ‘A new control scheme to improve load transient response of single phase PWM rectifier with auxiliary current injection circuit’. 2016 IEEE Applied Power Electronics Conf. Exposition (APEC), IEEE, 2016, pp. 552557.
    7. 7)
      • 13. Qin, Z., Tang, Y., Loh, P.C., et al: ‘Benchmark of AC and DC active power decoupling circuits for second-order harmonic mitigation in kilowatt-scale single-phase inverters’, IEEE J. Emerg. Sel. Top. Power Electron., 2016, 4, (1), pp. 1525.
    8. 8)
      • 20. McLyman, C.W.T.: ‘Transformer and inductor design handbook’ (CRC pressUSA, 2016).
    9. 9)
      • 11. Krein, P.T., Balog, R.S.: ‘Cost-effective hundred-year life for single-phase inverters and rectifiers in solar and LED lighting applications based on minimum capacitance requirements and a ripple power port’. Applied Power Electronics Conf. Exposition, 2009 APEC 2009 24 Annual IEEE, 2009, pp. 620625.
    10. 10)
      • 21. EI type silicon steel lamination dimensionAvailable at http://www.bongtra.co.kr/core/core_for_transformer.pdf, Accessed: 2016.
    11. 11)
      • 22. Xie, M.: ‘Digital control for power factor correction’, PhD dissertation, Virginia Polytechnic Institute and State University, USA, 2003.
    12. 12)
      • 9. Hu, H., Harb, S., Fang, X., et al: ‘A three-port flyback for PV microinverter applications with power pulsation decoupling capability’, IEEE Trans. Power Electron., 2012, 27, (9), pp. 39533964.
    13. 13)
      • 14. Hu, H., Harb, S., Kutkut, N., et al: ‘A review of power decoupling techniques for microinverters with three different decoupling capacitor locations in PV systems’, IEEE Trans. Power Electron., 2013, 28, (6), pp. 27112726.
    14. 14)
      • 4. Wang, S., Ruan, X., Yao, K., et al: ‘A flicker-free electrolytic capacitor-less AC–DC LED driver’, IEEE Trans. Power Electron., 2012, 27, (11), pp. 45404548.
    15. 15)
      • 17. Arias, M., Lamar, D.G., Sebastian, J., et al: ‘High-efficiency LED driver without electrolytic capacitor for street lighting’, IEEE Trans. Ind. Appl., 2013, 49, (1), pp. 127137.
    16. 16)
      • 18. Kathiresan, R., Das, P., Reindl, T., et al: ‘Novel high-power nonresonant multichannel led driver’, IEEE Trans. Ind. Electron., 2017, 64, (7), pp. 58515864.
    17. 17)
      • 8. Wang, R., Wang, F., Boroyevich, D., et al: ‘A high power density single-phase PWM rectifier with active ripple energy storage’, IEEE Trans. Power Electron., 2011, 26, (5), pp. 14301443.
    18. 18)
      • 2. Philips advance LED driver LEDINTA0024V41FOAvailable at http://images.philips.com/is/content/PhilipsConsumer/PDFDownloads/United%20States/LED%20Drivers%20Literature/ODLI20150810_001-UPD-en_US-PAd-1469DS_Xitanium_100W_24V_DS_v2.pdf, Accessed: 2014.
    19. 19)
      • 19. Sun, J.: ‘On the zero-crossing distortion in single-phase PFC converters’, IEEE Trans. Power Electron., 2004, 19, (3), pp. 685692.
    20. 20)
      • 5. Cai, W., Liu, B., Duan, S., et al: ‘An active low-frequency ripple control method based on the virtual capacitor concept for BIPV systems’, IEEE Trans. Power Electron., 2014, 29, (4), pp. 17331745.
    21. 21)
      • 1. ‘Cree LED datasheetAvailable at https://www.cree.com/led-components/media/documents/ds-XBD.pdf, Accessed: 2018.
    22. 22)
      • 15. Shimizu, T., Jin, Y., Kimura, G.: ‘DC ripple current reduction on a single-phase PWM voltage-source rectifier’, IEEE Trans. Ind. Appl., 2000, 36, (5), pp. 14191429.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2018.5874
Loading

Related content

content/journals/10.1049/iet-pel.2018.5874
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading