access icon free Experimental study of a novel filter structure designed for MEMS-based sensors in electric vehicles

This work describes a comparative study between Kalman filter, a complementary filter and a combination of both, for use in electrical vehicles. Combining the benefits offered by each filter to obtain an optimised filter combination is targeted. Three different combinations: The Kalman-complementary filter (KCF), complementary-Kalman filter (CKF) and 2KCFs are examined here. The filters are used to improve signals obtained via two sensors (gyroscope and accelerometer) integrated into the sensor IMU-MPU6050, with internal DMP. The sensor data are filtered to guarantee the movement quality of electrical vehicles. The KCF combination shows higher performance than the CKF combination. Moreover, the experimental results show that the 2KCF combination yields best performance with minimal noise levels and more accurate angle measurement. The optimal combination is strongly recommended for future electrical vehicle development.

Inspec keywords: Kalman filters; microsensors; angular measurement; electric vehicles

Other keywords: gyroscope; accelerometer; MEMS-based sensors; complementary-Kalman filter structure; sensor IMU-MPU6050; CKF combination; internal DMP; angle measurement; optimised filter combination; Kalman complementary filter structure; electrical vehicle development; 2KCF combination

Subjects: Spatial variables measurement; Spatial variables measurement; Sensing and detecting devices; MEMS and NEMS device technology; Micromechanical and nanomechanical devices and systems; Microsensors and nanosensors; Filters and other networks

References

    1. 1)
      • 10. Roan, P., Deshpande, N., Wang, Y., et al: ‘Manipulator state estimation with low cost accelerometers and gyroscopes’. IEEE Int. Conf. Intelligent Robotic Systems, Vilamoura, Portugal, 2012, pp. 48224827.
    2. 2)
      • 8. Barbour, N.: ‘Inertial navigation sensors’, NATO RTO Lect. Ser., 2011, 116, pp. 124.
    3. 3)
      • 4. Wang, Q., Yang, J., Ren, M., et al: ‘Driver fatigue detection: a survey’. 2006 6th World Congress on Intelligent Control and Automation, Dalian, People's Republic of China, 2006, pp. 85878591.
    4. 4)
      • 6. Madou, M.J.: ‘Fundamental of microfabrication and nanotechnology1989.
    5. 5)
      • 13. Ngo, T., Nguyen, P., Huynh, S., et al: ‘Experimental comparison of complementary filter and Kalman filter design for low-cost sensor in quadcopter’, Int. Conf. Syst. Sci. Eng., Ho Chi Minh City, Vietnam, 2017, (3), pp. 488493.
    6. 6)
      • 11. Gannouni, F., Hmida, F. Ben: ‘Simultaneous state and fault estimation for linear stochastic systems’. Int. Conf. Science Techniques Automation Control and Computer Engineering, Monastir, Tunisia, 2017, pp. 5966.
    7. 7)
      • 12. Bai, W., Xue, W., Huang, Y., et al: ‘On extended state based Kalman filter design for a class of nonlinear time-varying uncertain systems’, Sci. China Inf. Sci., 2018, 61, (4), pp. 116.
    8. 8)
      • 20. Soták, M.: ‘Pure-inertial AHRS with adaptive elimination of non-gravitational vehicle acceleration’. 2018, pp. 696707.
    9. 9)
      • 15. Hall, J.K., Knoebel, N.B., McLain, T.W.: ‘Quaternion attitude estimation for miniature air vehicles using a multiplicative extended Kalman filter’. 2008 IEEE/ION Position, Location and Navigation Symp., Monterey, CA, USA, 2008, pp. 12301237.
    10. 10)
      • 3. Horng, W.-B., Chen, C.-Y., Chang, Y., et al: ‘Driver fatigue detection based on eye tracking and dynamic template matching’. IEEE Int. Conf. on Networking, Sensing and Control, Taipei, Taiwan, 2004, pp. 712.
    11. 11)
      • 2. José, L.B.-L., Jesús, C., Álvaro, D., et al: ‘Potential and limitations of an improved method to produce dynamometric wheels’, Sens. Open Access J., 2018, 18, (2), pp. 119.
    12. 12)
      • 14. Mahony, R., Hamel, T.: ‘Complementary filter design on the special orthogonal group SO (3)’. IEEE Int. Conf. Decis. Control. Eur. Control Conf., 2005, Seville, Spain, no. 1, pp. 14771484.
    13. 13)
      • 1. Guo, H., Cao, D., Chen, H., et al: ‘Vehicle dynamic state estimation: state of the art schemes and perspectives’, IEEE/CAA J. Autom. Sin., 2018, 5, (2), pp. 418431.
    14. 14)
      • 22. Xue, L., Jiang, C.Y., Chang, H.L., et al: ‘A novel Kalman filter for combining outputs of MEMS gyroscope array’, Meas. J. Int. Meas. Confed., 2012, 45, (4), pp. 745754.
    15. 15)
      • 21. Mai, T.A., Anisimov, D.N., Dang, T.S., et al: ‘Development of a microcontroller-based adaptive fuzzy controller for a two-wheeled self-balancing robot’, Microsyst. Technol., 2018, 24, (9), pp. 36773687.
    16. 16)
      • 17. Carreira, F., Calado, J.M.F., Cardeira, C., et al: ‘Complementary filter design with three frequency bands: robot attitude estimation’. Proc. - 2015 IEEE Int. Conf. Autonomous Robot Systems Competitions ICARSC 2015, Vila Real, Portugal, 2015, pp. 168173.
    17. 17)
      • 16. Caputo, F., D'Amato, E., Greco, A., et al: ‘Human posture tracking system for industrial process design and assessment’. Int. Conf. on Intelligent Human Systems Integration, Dubai, UAE, 2018, pp. 450455.
    18. 18)
      • 18. Huang, J., Sedano, F., Huang, Y., et al: ‘Assimilating a synthetic Kalman filter leaf area index series into the WOFOST model to improve regional winter wheat yield estimation’, Agric. For. Meteorol., 2016, 216, pp. 188202.
    19. 19)
      • 5. Mokhtari, B., Benkhoris, M.F.: ‘High ripples reduction in DTC of induction motor by using a new reduced switching table’, J. Electr. Eng., 2016, 67, (3), pp. 206211.
    20. 20)
      • 19. Charel, S.E.R., Binugroho, E.H., Rosyidi, M.A., et al: ‘Kalman filter for angle estimation using dual inertial measurement units on unicycle robot’. 2016 Int. Electronics Symp. (IES), Denpasar, Indonesia, 2016, pp. 256261.
    21. 21)
      • 7. Daneshmand, S., Lachapelle, G.: ‘Integration of GNSS and INS with a phased array antenna’, GPS Solut., 2018, 22, (1), p. 3.
    22. 22)
      • 9. Wang, Y., Soltani, M., Akbar Hussain, D.M.: ‘A nonlinear attitude estimator for attitude and heading reference systems based on mems sensors’. Proc. 2016 SICE Int. Symp. Control Syst. ISCS 2016, Nagoya, Japan, 2016, vol. 1, (c), pp. 2330.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2018.5847
Loading

Related content

content/journals/10.1049/iet-pel.2018.5847
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading