Your browser does not support JavaScript!

Multi-input high step-up inverter with soft-switching capability, applicable in photovoltaic systems

Multi-input high step-up inverter with soft-switching capability, applicable in photovoltaic systems

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, a new multi-input high step-up inverter, based on isolated soft-switching DC–DC converter blocks is proposed. Each of these blocks can provide zero-voltage and zero-current switching for its semiconductors, which improve power efficiency. The interesting feature of this DC–DC converter is using bidirectional switches to generate both positive and negative output voltage levels in each DC–DC block with an appropriate control scheme. Each DC–DC converter operates by simple pulse width modulation control through fixed frequency and has two degrees of freedom, which provide the capability of output voltage regulation or maximum power point tracking. The proposed inverter consists of the cascaded connection of these DC–DC converters at their output terminal. This inverter can operate with high voltage gain, where the output voltage of each DC–DC converter is regulated. Furthermore, it can generate more output voltage levels with less number of DC–DC blocks. All these advantages make the proposed inverter suitable for photovoltaic power conditioning systems. In this study, the theoretical analysis with steady-state waveforms, design constraints, resonant tank analysis and comparison study are given. Then, experimental results of both the proposed inverter and its DC–DC blocks are presented.


    1. 1)
      • 32. Xuewei, P., Rathore, A.K.: ‘Naturally commutated and clamped soft-switching current-fed push-pull voltage doubler based solar PV inverter’. Proc. ISIE, Istanbul, 2014, pp. 26312636.
    2. 2)
      • 14. Sharma, B., Nakka, J.: ‘Single-phase cascaded multilevel inverter topology addressed with the problem of unequal photovoltaic power distribution in isolated dc links’, IET Power Electron., 2019, 12, (2), pp. 284294.
    3. 3)
      • 12. Mousa Haddadi, A., Farhangi, A., Blaabjerg, F.: ‘An isolated bidirectional single-stage inverter without electrolytic capacitor for energy storage systems’, IEEE J. Emerging Sel. Topics Power Electron., 2019, 7, (3), pp. 20702080.
    4. 4)
      • 25. Rathore, A.K., Bhat, A.K.S., Oruganti, R.: ‘Analysis, design and experimental results of wide range ZVS active-clamped L-L type current-fed DC/DC converter for fuel cells to utility interface’, IEEE Trans. Ind. Electron., 2012, 59, (1), pp. 473485.
    5. 5)
      • 23. Xuewei, P., Rathore, A.K.: ‘Novel bidirectional snubberless naturally commutated soft-switching current-fed full-bridge isolated dc-dc converter for fuel cell vehicles’, IEEE Trans. Ind. Electron., 2014, 61, (5), pp. 23072315.
    6. 6)
      • 15. Pourfaraj, A., Monfared, M., Heydari-doostabad, H.: ‘Single-phase dual-mode interleaved multi-level inverter (DMIMI) for PV applications’, IEEE Trans. Ind. Electron., doi: 10.1109/TIE.2019.2910041.
    7. 7)
      • 7. Cao, D., Jiang, S., Peng, F.Z., et al: ‘Low cost transformer isolated boost half-bridge micro-inverter for single-phase grid-connected photovoltaic system’. Proc. APEC, Orlando, FL, 2012, pp. 7178.
    8. 8)
      • 8. Lee, S.J., Bae, H.S., Cho, B.H.: ‘Modeling and control of the single-phase photovoltaic grid-connected cascaded H-bridge multilevel inverter’. IEEE Energy Conversion Congress and Exposition, San Jose, CA, 2009, pp. 4347.
    9. 9)
      • 26. Sree, K.R., Rathore, A.K.: ‘Impulse-commutated zero-current-switching current-fed three-phase DC/DC converter’, IEEE Trans. Ind. Appl., 2016, 52, (2), pp. 18551864.
    10. 10)
      • 3. Tarzamni, H., Babaei, E., Zarrin Gharehkoushan, A., et al: ‘Interleaved full ZVZCS DC–DC boost converter: analysis, design, reliability evaluations and experimental results’, IET Power Electron., 2017, 10, (7), pp. 835845.
    11. 11)
      • 16. LaBella, T., Yu, W., Lai, J.S., et al: ‘A bidirectional-switch-based wide-input range high-efficiency isolated resonant converter for photovoltaic applications’, IEEE Trans. Power Electron., 2014, 29, (7), pp. 34733484.
    12. 12)
      • 31. Bal, S., Rathore, A.K., Srinivasan, D.: ‘Naturally clamped snubberless soft-switching bidirectional current-fed three-phase push-pull DC/DC converter for DC micro-grid application’. Proc. IEEE APEC, Charlotte, 2015, pp. 717724.
    13. 13)
      • 17. Azadeh, A., Babaei, E., Tarzamni, H., et al: ‘Single-inductor dual-output DC/DC converter with capability of feeding a constant power load in open-loop manner’, IEEE Trans. Ind. Electrons., 2019, 66, (9), pp. 69066915.
    14. 14)
      • 13. Zhang, F., Xie, Y., Hu, Y., et al: ‘A hybrid boost-flyback/flyback micro-inverter for photovoltaic applications’, IEEE Trans. Ind. Electron., 2020, 67, (1), pp. 308318.
    15. 15)
      • 20. Ajami, A., Oskuee, M.R.J., Mokhberdoran, A., et al: ‘Developed cascaded multilevel inverter topology to minimise the number of circuit devices and voltage stresses of switches’, IET Power Electron., 2014, 7, (2), pp. 459466.
    16. 16)
      • 18. Meinagh, F.A.A., Babaei, E., Tarzamni, H.: ‘Modified high voltage gain switched boost inverter’, IET Power Electron., 2017, 10, (13), pp. 16551664.
    17. 17)
      • 28. Roggia, L., Schuch, L., Baggio, J.E., et al: ‘Integrated full-bridge-forward DC–DC converter for a residential microgrid application’, IEEE Trans. Power Electron., 2013, 28, (4), pp. 17281740.
    18. 18)
      • 30. Prasanna, U.R., Rathore, A.K.: ‘Small-signal modeling of active-clamped ZVS current-fed full-bridge isolated DC/DC converter and control system implementation using PSoC’, IEEE Trans. Ind. Electron., 2014, 61, (3), pp. 12531261.
    19. 19)
      • 5. Li, Q., Wolfs, P.: ‘A review of the single phase photovoltaic module integratedconverter topologies with three different DC link configurations’, IEEE Trans. Power Electron., 2008, 23, (3), pp. 13201333.
    20. 20)
      • 34. Mohammadi, M., Mohammadian Behbahani, M.R., Milimonfared, J., et al: ‘New high step-up flyback-based ZVS/ZCS DC-DC converter’. Proc. PEDSTC, Tehran, Iran, 2014, pp. 166171.
    21. 21)
      • 1. Farivar, G., Hredzak, B., Agelidis, V.G.: ‘A DC-side sensorless cascaded H-bridge multilevel converter-based photovoltaic system’, IEEE Trans. Ind. Electron., 2016, 63, (7), pp. 42334241.
    22. 22)
      • 6. Rivera, S., Kouro, S., Wu, B., et al: ‘Cascaded H-bridge multilevel converter multistring topology for large scale photovoltaic systems’. Proc. ISIE, Gdansk, 2011, pp. 18371844.
    23. 23)
      • 27. Rodríguez, A., Vázquez, A., Lamar, D.G., et al: ‘Different purpose design strategies and techniques to improve the performance of a dual active bridge with phase-shift control’, IEEE Trans. Power Electron., 2015, 30, (2), pp. 790804.
    24. 24)
      • 36. Meinagh, F.A.A., Babaei, E., Tarzamni, H., et al: ‘Isolated high step-up switched-boost DC/DC converter with modified control method’, IET Power Electron., 2019, doi: 10.1049/iet-pel.2018.6114.
    25. 25)
      • 11. Aleem, Z., Winberg, S., Iqbal, A., et al: ‘Single-phase transformer based HF-isolated impedance source inverters with voltage clamping techniques’, IEEE Trans. Ind. Electron., 2019, 66, (11), pp. 84348444.
    26. 26)
      • 10. Chavarria, J., Biel, D., Guinjoan, F., et al: ‘Energy-balance control of PV cascaded multilevel grid-connected inverters under level-shifted and phase-shifted PWMs’, IEEE Trans. Ind. Electron., 2013, 60, (1), pp. 98111.
    27. 27)
      • 4. Sabahi, M., Babaei, E., Ahmadzadeh, T., et al: ‘An extended Quasi-switched Z-source inverter’. PEDSTC, Shiraz, Iran, 2019, pp. 189194.
    28. 28)
      • 21. Babaei, E., Gowgani, S.S.: ‘Hybrid multilevel inverter using switched capacitor units’, IEEE Trans. Ind. Electron., 2014, 61, (9), pp. 46144621.
    29. 29)
      • 33. Tarzamni, H., Babaei, E., Zarrin Gharehkoushan, A.: ‘A full soft switching ZVZCS flyback converter using an active auxiliary cell’, IEEE Trans. Ind. Electron., 2017, 64, (2), pp. 11231129.
    30. 30)
      • 19. Babaei, E., Alilu, S., Laali, S.: ‘A new general topology for cascaded multilevel inverters with reduced number of components based on developed H-bridge’, IEEE Trans. Ind. Electron., 2014, 61, (8), pp. 39323939.
    31. 31)
      • 9. Sepahvand, H., Liao, J., Ferdowsi, M., et al: ‘Capacitor voltage regulation in single-DC-source cascaded H-bridge multilevel converters using phase-shift modulation’, IEEE Trans. Ind. Electron., 2013, 60, (9), pp. 36193626.
    32. 32)
      • 22. Hosseini, S.H., Gharehkoushan, A.Z., Tarzamni, H.: ‘A multilevel boost converter based on a switched-capacitor structure’. 10th Int. Conf. on Electrical and Electronics Engineering (ELECO), Bursa, 2017, pp. 249253.
    33. 33)
      • 29. Wu, T.F., Chen, Y.C., Yang, J.G., et al: ‘Isolated bidirectional full-bridge DC–DC converter with a flyback snubber’, IEEE Trans. Power Electron., 2010, 25, (7), pp. 19151922.
    34. 34)
      • 35. Kolahian, P., Tarzamni, H., Nikafrooz, A., et al: ‘Multi-port DC–DC converter for bipolar medium voltage DC micro-grid applications’, IET Power Electron., 2019, 12, (7), pp. 18411849.
    35. 35)
      • 24. Wijeratne, D.S., Moschopoulos, G.: ‘A ZVS-PWM full-bridge converter with reduced conduction losses’, IEEE Trans. Power Electron., 2014, 29, (7), pp. 35013513.
    36. 36)
      • 2. Trazamni, H., Babaei, E., Sabahi, M.: ‘Full soft-switching high step-up DC–DC converter based on active resonant cell’, IET Power Electron., 2017, 10, (13), pp. 17291739.

Related content

This is a required field
Please enter a valid email address