access icon free High-efficiency three-phase bidirectional dc–ac converter for energy storage systems

This study presents a high-efficiency three-phase bidirectional dc–ac converter for use in energy storage systems (ESSs). The proposed converter comprises a modified three-level T-type converter (M3LT2C) and a three-level bidirectional dc–dc converter. The M3LT2C comprises two T-type cells to interface with a three-phase grid. By directly connecting the S-phase of the grid to a neutral point on the dc link, the active and passive components are required for only two grid phases, which reduces power losses, system volume, and production cost. A direct nominal voltage compensation control algorithm enables the converter to obtain high grid power quality. Also, the three-level bidirectional dc–dc converter enables low switching and conduction losses with reduced voltage stress across the switches. In addition, a simple dc-link voltage-balancing algorithm enables the balancing of two split dc-link capacitor voltages. To confirm the theoretical analysis of the proposed converter and assess its validity, a 10-kW prototype was implemented and tested.

Inspec keywords: DC-AC power convertors; power grids; energy storage; switching convertors; voltage control; power capacitors; DC-DC power convertors

Other keywords: high-efficiency three-phase bidirectional dc–ac converter; active components; direct nominal voltage compensation control algorithm; dc link; M3LT2C; three-level T-type converter; passive components; energy storage systems; grid phases; three-phase grid; three-level bidirectional dc–dc converter; split dc-link capacitor voltages; simple dc-link voltage-balancing algorithm; T-type cells; high grid power quality

Subjects: Other energy storage; DC-AC power convertors (invertors); Other power apparatus and electric machines; DC-DC power convertors; Voltage control; Control of electric power systems

References

    1. 1)
      • 6. Kwon, J.M., Kwon, B.H., Nam, K.H.: ‘Three-phase photovoltaic system with three-level boosting MPPT control’, IEEE Trans. Power Electron., 2008, 23, (5), pp. 23192327.
    2. 2)
      • 18. Wang, Y., Wang, F.: ‘Novel three-phase three-level-stacked neutral point clamped grid-tied solar inverter with a split phase controller’, IEEE Trans. Power Electron., 2016, 28, (6), pp. 28562866.
    3. 3)
      • 20. Wen, X., Fan, T., Ning, P., et al: ‘Technical approaches towards ultra-high power density SiC inverter in electric vehicle applications’, CES Trans. Electr. Mach. Syst., 2017, 1, (3), pp. 331335.
    4. 4)
      • 11. Zhao, B., Song, Q., Liu, W., et al: ‘A synthetic discrete design methodology of high-frequency isolated bidirectional DC/DC converter for grid-connected battery energy storage system using advanced components’, IEEE Trans. Ind. Electron., 2014, 61, (10), pp. 54025410.
    5. 5)
      • 10. Li, C., Huang, W., Bu, F., et al: ‘Three-phase single-stage AC–DC converter based on magnetic-combination transformer with power factor correction’, IEEE Trans. Ind. Electron., 2016, 63, (12), pp. 73207327.
    6. 6)
      • 3. Serban, I., Marinescu, C.: ‘Control strategy of three-phase battery energy storage system for frequency support in microgrids and with uninterrupted supply of local loads’, IEEE Trans. Power Electron., 2014, 29, (9), pp. 50105020.
    7. 7)
      • 21. Xiao, H., Xie, S., Chen, Y., et al: ‘An optimized transformerless photovoltaic grid-connected inverter’, IEEE Trans. Ind. Electron., 2011, 58, (5), pp. 11871195.
    8. 8)
      • 22. Rajapakse, A.D., Gole, A.M., Wilson, P.L.: ‘Electromagnetic transients simulation models for accurate representation of switching losses and thermal performance in power electronic systems’, IEEE Trans. Power Electron., 2005, 20, (1), pp. 319327.
    9. 9)
      • 2. Tummuru, N.R., Mishra, M.K., Srinivas, S.: ‘Dynamic energy management of renewable grid integrated hybrid energy storage system’, IEEE Trans. Ind. Electron., 2015, 62, (12), pp. 77287737.
    10. 10)
      • 14. Babaei, E., Saadatizadeh, Z., Cecati, C.: ‘High step-up high step-down bidirectional DC/DC converter’, IET Power Electron., 2017, 10, (12), pp. 15561571.
    11. 11)
      • 17. Gu, L., Jin, K.: ‘A three-phase isolated bidirectional AC/DC converter and its modified SVPWM algorithm’, IEEE Trans. Power Electron., 2015, 30, (10), pp. 54585468.
    12. 12)
      • 4. Serban, I., Marinescu, C.: ‘An enhanced three-phase battery energy storage system for frequency control in microgrids’. Int. Conf. on Optimization of Electrical and Electronic Equipment (OPTIM), Moieciu, Romania, 24–26 May 2012, pp. 912918.
    13. 13)
      • 9. Campanhol, L.B.G., Silva, S.A.O., Oliveira, A.A.Jr, et al: ‘Single-stage three-phase grid-tied PV system with universal filtering capability applied to DG systems and AC microgrids’, IEEE Trans. Power Electron., 2017, 32, (12), pp. 91319142.
    14. 14)
      • 19. Liu, Y., See, K.-Y., Yin, S., et al: ‘LCL filter design of a 50-kW 60-kHz SiC inverter with size and thermal considerations for aerospace applications’, IEEE Trans. Ind. Electron., 2017, 64, (10), pp. 83218333.
    15. 15)
      • 13. Wu, H., Lu, Y., Chen, L., et al: ‘High step-up/step-down non-isolated BDC with built-in DC-transformer for energy storage systems’, IET Power Electron., 2016, 9, (13), pp. 25712579.
    16. 16)
      • 23. Gu, B., Dominic, J., Lai, J.S., et al: ‘High reliability and efficiency single-phase transformerless inverter for grid-connected photovoltaic systems’, IEEE Trans. Power Electron., 2013, 28, (5), pp. 22352245.
    17. 17)
      • 8. Cao, J., Emadi, A.: ‘A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles’, IEEE Trans. Power Electron., 2012, 27, (1), pp. 122132.
    18. 18)
      • 15. Inoue, S., Akagi, H.: ‘A bidirectional DC-DC converter for an energy storage system with galvanic isolation’, IEEE Trans. Power Electron., 2007, 22, (6), pp. 22992306.
    19. 19)
      • 5. Masaoud, A., Mekhilef, S., Ping, H.W., et al: ‘A simplified structure for three-phase 4-level inverter employing fundamental frequency switching technique’, IET Power Electron., 2017, 10, (14), pp. 18701877.
    20. 20)
      • 7. Kim, J.S., Lee, S.H., Cha, W.J., et al: ‘High-efficiency bridgeless three-level power factor correction rectifier’, IEEE Trans. Ind. Electron., 2017, 64, (2), pp. 11301136.
    21. 21)
      • 16. Tan, N.M.L., Abe, T., Akagi, H.: ‘Design and performance of a bidirectional isolated DC–DC converter for a battery energy storage system’, IEEE Trans. Power Electron., 2012, 27, (3), pp. 12371248.
    22. 22)
      • 1. Mehmood, K.K., Khan, S.U., Lee, S.-J., et al: ‘Optimal sizing and allocation of battery energy storage systems with wind and solar power DGs in a distribution network for voltage regulation considering the lifespan of batteries’, IET Renew. Power Gener., 2017, 11, (10), pp. 13051315.
    23. 23)
      • 12. Lee, S.H., Kim, K.T., Kwon, J.M., et al: ‘Single-phase transformerless bi-directional inverter with high efficiency and low leakage current’, IET Power Electron., 2014, 7, (2), pp. 451458.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2018.5760
Loading

Related content

content/journals/10.1049/iet-pel.2018.5760
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading