access icon free Effect of different pulse-width modulation control methods on the behaviour of the series modified switched boost inverter

In this study, a switched Z-source inverter with a new suitable control method is proposed that is called the series modified switched boost inverter (SM-SBI). In addition, the generalised proposed control method is presented. Furthermore, in order to show the effect of the other control methods on the operation of SM-SBI, the operation of the proposed inverter is presented using two other control methods. In order to analyse precisely, each of these three switching methods is completely introduced and then the operation of SM-SBI in these three switching methods is thoroughly stated. In addition, equivalent circuits of the SM-SBI during these control methods are presented. The voltage and current equations of all elements in the proposed structure based on the three switching methods are derived. In addition, the power loss analysis of SM-SBI is presented too. In order to show the effect of used control methods on the other conventional structures, a comprehensive comparison between the proposed inverter and the other switched step-up inverters is shown by applying these three switching methods. In the end, in order to confirm theoretical analyses, the simulation results by using PSCAD/EMTDC software are presented as well as the experimental results.

Inspec keywords: switching convertors; equivalent circuits; PWM invertors

Other keywords: generalised proposed control method; suitable control method; series modified switched boost inverter; switching methods; PSCAD/EMTDC software; pulse-width modulation control methods; SM-SBI; switched Z-source inverter

Subjects: Control of electric power systems; Power electronics, supply and supervisory circuits; DC-AC power convertors (invertors)

References

    1. 1)
      • 23. Ahmad, A., Bussa, V.K., Singh, R.K., et al: ‘Switched-boost modified Z-source inverter topologies with improved voltage gain capability’, IEEE JESTP Electron., 2018, 6, (4), pp. 22272244.
    2. 2)
      • 22. Hasan Babayi Nozadian, M., Babaei, E., Hosseini, S.H., et al: ‘Steady state analysis and design considerations of high voltage gain switched Z-source inverter with continuous input current’, IEEE Trans. Ind. Electron., 2017, 64, (7), pp. 53425350.
    3. 3)
      • 26. Peng, F.Z., Shen, M., Qian, Z.: ‘Maximum boost control of the Z-source inverter’, IEEE Trans. Power Electron., 2005, 20, (4), pp. 833838.
    4. 4)
      • 13. Nguyen, M.K., Le, T.V., Park, S.J., et al: ‘Class of high boost inverters based on switched-inductor structure’, IET Power Electron., 2015, 8, (5), pp. 750759.
    5. 5)
      • 15. Ho, A.V., Chun, T.W., Kim, H.G.: ‘Extended boost active-switched-capacitor/switched-inductor quasi-Z-source inverters’, IEEE Trans. Power Electron., 2015, 30, (10), pp. 56815690.
    6. 6)
      • 6. Qian, W., Peng, F.Z., Cha, H.: ‘Trans Z-source inverters’, IEEE Trans. Power Electron., 2011, 26, (12), pp. 34533463.
    7. 7)
      • 8. Hasan Babayi Nozadian, M., Babaei, E., Hosseini, S.H., et al: ‘Switched Z-source networks: a review’, IET Power Electron., 2019, 12, (7), pp. 16161633, DOI: 10.1049/iet-pel.2018.5436.
    8. 8)
      • 28. Shen, M., Wang, J., Joseph, A., et al: ‘Constant boost control of the Z-source inverter to minimize current ripple and voltage stress’, IEEE Trans. Ind. Appl., 2006, 42, (3), pp. 770778.
    9. 9)
      • 18. Babaei, E., Shokati Asl, E., Hasan Babayi, M.: ‘Steady-state and small-signal analysis of high voltage gain half-bridge switched-boost inverter’, IEEE Trans. Ind. Electron., 2016, 63, (6), pp. 35463553.
    10. 10)
      • 3. Tang, Y., Wei, J., Xie, S.: ‘Grid-tied photovoltaic system with series Z-source inverter’, IET Renew. Power Gener., 2013, 7, (3), pp. 275283.
    11. 11)
      • 4. Zhu, M., Yu, K., Luo, F.L.: ‘Switched inductor Z-source inverter’, IEEE Trans. Power Electron., 2010, 25, (8), pp. 21502158.
    12. 12)
      • 27. Shen, M., Wang, J., Joseph, A., et al: ‘Maximum constant boost control of the Z-source inverter’. Proc. IAS, Seattle, USA, 2004, pp. 142147.
    13. 13)
      • 21. Nguyen, M.K., Duong, T.D., Lim, Y.C., et al: ‘Switched-capacitor quasi-switched boost inverters’, IEEE Trans. Ind. Electron., 2018, 65, (6), pp. 51055113.
    14. 14)
      • 19. Shokati Asl, E., Babaei, E., Sabahi, M., et al: ‘New half bridge and full bridge topologies for switched boost inverter with continuous input current’, IEEE Trans. Ind. Electron., 2018, 65, (4), pp. 31883197.
    15. 15)
      • 16. Nguyen, M.K., Lim, Y.C., Choi, J.H., et al: ‘Trans-switched boost inverters’, IET Power Electron., 2016, 9, (5), pp. 10651073.
    16. 16)
      • 10. Babaei, E., Shokati Asl, E., Hasan Babayi, M., et al: ‘Developed embedded switched-Z-source inverter’, IET Power Electron., 2016, 9, (9), pp. 18281841.
    17. 17)
      • 20. Gu, Y., Chen, Y., Zhang, B.: ‘Enhanced-boost quasi-z-source inverter with an active switched Z-network’, IEEE Trans. Ind. Electron., 2018, PP, (99), pp. 11.
    18. 18)
      • 1. Peng, F.Z.: ‘Z-source inverter’, IEEE Trans. Ind. Appl., 2003, 39, (2), pp. 504510.
    19. 19)
      • 29. Babaei, E., Hasan Babayi Nozadian, M., Shokati Asl, E.: ‘Basic and quasi structures of step-up switched based dc/dc converter: steady-state analysis and design in different operating modes’, J. Circ. Syst. Comput., vol. 27, no. 5, p. 1850069(1–24), 2018.
    20. 20)
      • 2. Anderson, J., Peng, F.: ‘Four quasi-Z-source inverters’. Proc. PESC, Rhodes, Greece, 2008, pp. 27432749.
    21. 21)
      • 25. Peng, F.Z., Shen, M., Qian, Z.: ‘Maximum boost control of the Z-source inverter’. Proc. PESC, Aachen, Germany, 2004, pp. 255260.
    22. 22)
      • 30. Hasan Babayi Nozadian, M., Babaei, E., Hosseini, S.H.: ‘Class of high step-up switched Z-source inverters: steady state analysis and objective function’, IET Power Electron., 2019, 12, (6), pp. 13291340, in press. DOI: 10.1049/iet-pel.2018.5831.
    23. 23)
      • 5. Hasan Babayi Nozadian, M., Babaei, E., Hosseini, S.H.: ‘High step-up single-phase switched Z-source inverter: steady state analysis and cost evaluation’, IET Power Electron., 2019, 12, (4), pp. 639647.
    24. 24)
      • 17. Nag, S.S., Mishra, S.: ‘A coupled inductor based high boost inverter with sub-unity turns-ratio range’, IEEE Trans. Power Electron., 2016, 31, (11), pp. 75347543.
    25. 25)
      • 14. Babaei, E., Hasan Babayi, M., Shokati Asl, E., et al: ‘A new topology for Z-source inverter based on switched-inductor and boost Z-source inverter’, J. Oper. Autom. Power Eng., 2015, 3, (2), pp. 167184.
    26. 26)
      • 11. Nag, S.S., Mishra, S.: ‘Current–fed switched inverter’, IEEE Trans. Ind. Electron., 2014, 61, (9), pp. 46804690.
    27. 27)
      • 24. Nguyen, M.K., Duong, T.D., Lim, Y.C., et al: ‘High voltage gain quasi-switched boost inverters with low input current ripple’, IEEE Trans. Ind. Inf., 2018, PP, (99), pp. 11.
    28. 28)
      • 9. Ravindranath, A., Mishra, S.K., Joshi, A.: ‘Analysis and PWM control of switched boost inverter’, IEEE Trans. Power Electron., 2013, 60, (12), pp. 55935602.
    29. 29)
      • 7. Li, D., Loh, P.C., Zhu, M., et al: ‘Cascaded multicell trans Z-source inverters’, IEEE Trans. Power Electron., 2013, 28, (2), pp. 826836.
    30. 30)
      • 12. Nguyen, M.K., Le, T.V., Park, S.J., et al: ‘A class of quasi-switched boost inverters’, IEEE Trans. Ind. Electron., 2015, 62, (3), pp. 15261536.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2018.5748
Loading

Related content

content/journals/10.1049/iet-pel.2018.5748
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading