Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Modular multilevel converters technology: a comprehensive study on its topologies, modelling, control and applications

A modular multilevel converter (MMC) is one of the perfect topologies for high power and medium-/high-voltage energy conversion systems. The MMC has attractive features such as modularity, voltage and current scalability, transformerless operation, fault blocking capability, reduced filter size, a reduced ripple of the output current, high efficiency, and low expense on redundancy. These features attracted industries over the past few years, notable research has been carried out on MMC topologies, their operation, and control. This study presents a review of MMC topologies and their mathematical models. Furthermore, their control schemes (classical as well as model predictive controls) and modulation techniques are discussed. Finally, MMC applications and their future challenges are highlighted.

References

    1. 1)
      • 68. Jacobson, B., Karlsson, P., Asplund, G., et al: ‘VSC-HVDC transmission with cascaded two-level converters’. Proc. CIGRE General Meeting, Session B4, Paris, 2010.
    2. 2)
      • 79. Du, S., Wu, B., Tian, K., et al: ‘An active cross-connected modular multilevel converter (ac-MMC) for a medium voltage motor drive’, IEEE Trans. Ind. Electron., 2016, 63, (8), pp. 47074717.
    3. 3)
      • 95. Angquist, L., Antonopoulos, A., Siemaszko, D., et al: ‘Open-loop control of modular multilevel converters using an estimation of stored energy’, IEEE Trans. Ind. Appl., 2011, 47, (6), pp. 25162524.
    4. 4)
      • 63. Ebrahimi, J., Babaei, E., Gharehpetian, G.B.: ‘A new multilevel converter topology with reduced number of power electronic components’, IEEE Trans. Ind. Electron., 2012, 59, (2), pp. 655667.
    5. 5)
      • 175. Ilves, K., Harnefors, L., Norrga, S., et al: ‘Predictive sorting algorithm for modular multilevel converters minimizing the spread in the submodule capacitor voltages’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 440449.
    6. 6)
      • 80. Kammerer, F., Kolb, J., Braun, M.: ‘Fully decoupled current control and energy balancing of the modular multilevel matrix converter’. 2012 15th Int. Power Electronics and Motion Control Conf. (EPE/PEMC), Novi Sad, Serbia, September 2012, pp. LS2a.31–LS2a.3–8.
    7. 7)
      • 148. Kavousi, A., Vahidi, B., Salehi, R., et al: ‘Application of the bee algorithm for selective harmonic elimination strategy in multilevel inverters’, IEEE Trans. Power Electron., 2012, 27, (4), pp. 16891696.
    8. 8)
      • 114. Meynard, T., Foch, H., Thomas, P., et al: ‘Multicell converters: basic concepts and industry applications’, IEEE Trans. Ind. Electron., 2002, 49, (5), pp. 955964.
    9. 9)
      • 93. Maguire, T., Warkentin, B., Chen, Y., et al: ‘Efficient techniques for real-time simulation of MMC systems’. Int. Conf. on Power Systems Transients (IPST2013), Vancouver, Canada, 2013.
    10. 10)
      • 120. Hassanpoor, A., Norrga, S., Nee, H.P., et al: ‘Evaluation of different carrier-based PWM methods for modular multilevel converters for HVDC application’. IECON 2012–38th Annual Conf. on IEEE Industrial Electronics Society, Montreal, QC, Canada, October 2012, pp. 388393.
    11. 11)
      • 204. Moon, J.-W., Gwon, J.-S., Park, J.-W., et al: Model predictive control with a reduced number of considered states in a modular multilevel converter for HVDC system’, IEEE Trans. Power Deliv., 2015, 30, (2), pp. 608617.
    12. 12)
      • 166. Dekka, A., Wu, B., Zargari, N.R.: ‘A novel modulation scheme and voltage balancing algorithm for the modular multilevel converter’, IEEE Trans. Ind. Appl., 2016, 52, (1), pp. 432443.
    13. 13)
      • 118. Darus, R., Konstantinou, G., Pou, J., et al: ‘Comparison of phase-shifted and level-shifted PWM in the modular multilevel converter’. 2014 Int. Power Electronics Conf. (IPEC-Hiroshima 2014 - ECCE ASIA), Hiroshima, Japan, May 2014, pp. 37643770.
    14. 14)
      • 31. Peng, F.Z., McKeever, J.W., Adams, D.J.: ‘Power line conditioner using cascade multilevel inverters for distribution systems’, IEEE Trans. Ind. Appl., 1998, 34, (6), pp. 12931298.
    15. 15)
      • 101. Schönung, A., Stemmler, H.: ‘Static frequency changes with subharmonic control in conjunction with reversible variable speed ac drives’, Brown Boveri Rev., 1964, 51, pp. 555577.
    16. 16)
      • 165. Yang, S., Tang, Y., Wang, P.: ‘Distributed control for a modular multilevel converter’, IEEE Trans. Power Electron., 2018, 33, (7), pp. 55785591.
    17. 17)
      • 46. Nami, A., Liang, J., Dijkhuizen, F., et al: ‘Modular multilevel converters for HVDC applications: review on converter cells and functionalities’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 1836.
    18. 18)
      • 152. Du, S., Liu, J.: ‘A study on dc voltage control for chopper-cell-based modular multilevel converters in the D-STATCOM application’, IEEE Trans. Power Deliv., 2013, 28, (4), pp. 20302038.
    19. 19)
      • 229. Liang, J., Jing, T., Gomis-Bellmunt, O., et al: ‘Operation and control of multiterminal HVDC transmission for offshore wind farms’, IEEE Trans. Power Deliv., 2011, 26, (4), pp. 25962604.
    20. 20)
      • 71. Adam, G.P., Davidson, I.E.: ‘Robust and generic control of full-bridge modular multilevel converter high-voltage DC transmission systems’, IEEE Trans. Power Deliv., 2015, 30, (6), pp. 24682476.
    21. 21)
      • 100. Qin, J., Saeedifard, M.: ‘Predictive control of a three-phase DC AC modular multilevel converter’. 2012 IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, NC, USA, September 2012, pp. 35003505.
    22. 22)
      • 211. Adam, G.P., Ahmed, K.H., Finney, S.J., et al: ‘Modular multilevel converter for medium-voltage applications’. 2011 IEEE Int. Electric Machines Drives Conf. (IEMDC), Niagara Falls, ON, Canada, May 2011, pp. 10131018.
    23. 23)
      • 173. Lizana, R., Dekka, A., Wu, B., et al: ‘Control of HVDC transmission system based on MMC with three-level flying capacitor submodule’.
    24. 24)
      • 130. Dekka, A., Wu, B., Zargari, N.: ‘A novel modulation scheme and voltage balancing algorithm for the modular multilevel converter’, IEEE Trans. Ind. Appl., 2015, 52, (1), pp. 432443.
    25. 25)
      • 105. McGrath, B.P., Holmes, D.G.: ‘Multicarrier PWM strategies for multilevel inverters’, IEEE Trans. Ind. Electron., 2002, 49, (4), pp. 858867.
    26. 26)
      • 185. She, X., Huang, A.: ‘Circulating current control of double-star chopper-cell modular multilevel converter for HVDC system’. IECON 2012 − 38th Annual Conf. on IEEE Industrial Electronics Society, Montreal, QC, Canada, 2012, pp. 12341239.
    27. 27)
      • 212. Allebrod, S., Hamerski, R., Marquardt, R.: ‘New transformerless, scalable modular multilevel converters for HVDC-transmission’. IEEE 2008 Power Electronics Specialists Conf. (PESC 2008), Rhodes, Greece, 2008, pp. 174179.
    28. 28)
      • 17. Steimer, P., Apeldoorn, O., Carroll, E., et al: ‘IGCT technology baseline and future opportunities’. 2001 IEEE/PES Transmission and Distribution Conf. and Exposition. Developing New Perspectives (Cat. No.01CH37294), Atlanta, GA, USA, 2001, pp. 11821187.
    29. 29)
      • 109. Hava, A.M., Kerkman, R.J., Lipo, T.A.: ‘Simple analytical and graphical methods for carrier-based PWM-VSI drives’, IEEE Trans. Power Electron., 1999, 14, (1), pp. 4961.
    30. 30)
      • 225. Liu, S., Xu, Z., Hua, W., et al: ‘Electromechanical transient modeling of modular multilevel converter based multi-terminal HVDC systems’, IEEE Trans. Power Syst., 2014, 29, (1), pp. 7283.
    31. 31)
      • 35. Peng, F.Zh.: ‘A generalized multilevel inverter topology with self voltage balancing’, IEEE Trans. Ind. Appl., 2001, 37, (2), pp. 611618.
    32. 32)
      • 129. Hasegawa, K., Akagi, H.: ‘A new dc-voltage-balancing circuit including a single coupled inductor for a five-level diode-clamped PWM inverter’, IEEE Trans. Ind. Appl., 2011, 47, (2), pp. 841852.
    33. 33)
      • 113. Agelidis, V., Calais, M.: ‘Application-specific harmonic performance evaluation of multicarrier PWM techniques’. 29th Annual IEEE Power Electronics Specialists Conf. (PESC), Fukuoka, Japan, May 1998, vol. 1, pp. 172178.
    34. 34)
      • 38. Debnath, S., Qin, J., Bahrani, B., et al: ‘Operation, control, and applications of the modular multilevel converter: a review’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 3753.
    35. 35)
      • 180. Hagiwara, M., Nishimura, K., Akagi, H.: ‘A medium-voltage motor drive with a modular multilevel PWM inverter’, IEEE Trans. Power Electron., 2010, 25, (7), pp. 17861799.
    36. 36)
      • 40. ALSTOM: ‘Hvdc maxsine’. Available at https://www.alstom.com/grid/products-and-services/engineered-energy-solutions/hvdc-transmission-systems/HVDC\Maxsine/.
    37. 37)
      • 119. McGrath, B., Teixeira, C., Holmes, G.: ‘Optimized phase disposition (PD) modulation of a modular multilevel converter’, IEEE Trans. Ind. Appl., 2017, PP, (99), pp. 11.
    38. 38)
      • 20. Kopta, A., Rahimo, M., Schlabach, U., et al: ‘A 6.5 kV IGBT module with the very high safe operating area’. Fortieth Industry Applications Society Conf. Annual Meeting (IAS 2005), Kowloon, Hong Kong, China, 2005, pp. 794798.
    39. 39)
      • 194. Kouro, S., Perez, M.A., Rodriguez, J., et al: ‘Model predictive control: MPC's role in the evolution of power electronics’, IEEE Ind. Electron. Mag., 2015, 9, (4), pp. 821.
    40. 40)
      • 141. Patel, H.S., Hoft, R.G.: ‘Generalized techniques of harmonic elimination and voltage control in thyristor inverters: part II – voltage control techniques’, IEEE Trans. Ind. Appl., 1974, 10, (5), pp. 666673.
    41. 41)
      • 226. Li, X., Yuan, Z., Fu, J., et al: ‘Nano multiterminal VSC-HVDC project for integrating large-scale wind generation’. 2014 IEEE PES General Meeting – Conf. Exposition, Washington, DC, July 2014, pp. 15.
    42. 42)
      • 26. Varley, J.: ‘HVDC: fifty years on’, Mod. Power Syst., 2004, 24, (10), pp. 1820.
    43. 43)
      • 18. Steimer, P.K., Gruening, H.E., Werninger, J., et al: ‘IGCT-a new emerging technology for high power, low-cost inverters’, IEEE Ind. Appl. Mag., 1999, 5, (4), pp. 1218.
    44. 44)
      • 215. Zhang, J., Zhao, C.: ‘The research of SM topology with dc fault tolerance in mmc-HVDC’, IEEE Trans. Power Deliv., 2015, 30, (3), pp. 15611568.
    45. 45)
      • 30. Tolbert, M.L., Peng, F.Z., Habetler, T.G.: ‘Multilevel converter for large electric device’, IEEE Trans. Ind. Appl., 1999, 35, (1), pp. 3644.
    46. 46)
      • 203. Gutierrez, B., Kwak, S.-S.: ‘Modular multilevel converters (MMCs) controlled by model predictive control with reduced calculation burden’, IEEE Trans. Power Electron., 2018.
    47. 47)
      • 170. Zhang, Y., Adam, G., Lim, T., et al: ‘Analysis of modular multilevel converter capacitor voltage balancing based on phase voltage redundant states’, IET Power Electron., 2012, 5, (6), pp. 726738.
    48. 48)
      • 43. SIEMENS: ‘Sinamics sm120’. Available at http://www.industry.siemens.com/drives/global/en/converter/mv-drives/sinamics-sm120-cm.
    49. 49)
      • 19. Gunturi, S., Schneider, D.: ‘On the operation of a press pack IGBT module under short circuit conditions’, IEEE Trans. Adv. Packag., 2006, 29, (3), pp. 433440.
    50. 50)
      • 231. Du, S., Wu, B., Tian, K., et al: ‘A novel medium voltage modular multilevel dc-dc converter’, IEEE Trans. Ind. Electron., 2016, 63, (12), pp. 79397949.
    51. 51)
      • 8. Casazza, J., Loehr, G.C.: ‘The evolution of electric power transmission under deregulation: selected readings’ (IEEE Press, Piscataway, NJ, 2000).
    52. 52)
      • 94. Dekka, A., Wu, B., Fuentes, R.L., et al: ‘Evolution of topologies, modeling, control schemes, and applications of modular multilevel converters’, IEEE J. Emerg. Sel. Top. Power Electron., 2017, 5, (4), pp. 16311656.
    53. 53)
      • 183. Li, Y., Wang, F.: ‘Arm inductance selection principle for modular multilevel converters with circulating current suppressing control’. 2013 28th Annual IEEE Applied Power Electronics Conf. and Exposition (APEC), Long Beach, CA, USA, March 2013, pp. 13211325.
    54. 54)
      • 135. Konstantinou, G., Ciobotaru, M., Agelidis, V.: ‘Selective harmonic elimination pulse-width modulation of modular multilevel converters’, IET Power Electron., 2013, 6, (1), pp. 96107.
    55. 55)
      • 42. EPRI: ‘HVDC flexible’. Available at https://www.epri/sgcc.com.cn/prgc/english/Product\Solution/HVDC\Flexible/.
    56. 56)
      • 75. Adam, G.P., Abdelsalam, I., Fletcher, J.E., et al: ‘New efficient submodule for a modular multilevel converter in multiterminal HVDC networks’, IEEE Trans. Power Electron., 2017, 32, (6), pp. 42584278.
    57. 57)
      • 228. Gao, Y., Bazargan, M., Xu, L., et al: ‘DC fault analysis of mmc based HVDC system for large offshore wind farm integration’. 2nd IET Renewable Power Generation Conf. (RPG 2013), Beijing, China, 2013, pp. 14.
    58. 58)
      • 142. Patel, H.S., Hoft, R.G.: ‘Generalized techniques of harmonic elimination and voltage control in thyristor inverters: part I–harmonic elimination’, IEEE Trans. Ind. Appl., 1973, 9, (3), pp. 310317.
    59. 59)
      • 55. Marquardt, R.: ‘Modular multilevel converter: A universal concept for HVDC-networks and extended DC bus-applications’. Proc. Int. Power Electronics Conf. (IPEC), Sapporo, Japan, 2010, pp. 502507.
    60. 60)
      • 158. The, A., Bruening, C., Dieckerhoff, S.: ‘CAN-based distributed control of an MMC optimized for a low number of submodules’. 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada, 2015, pp. 15901594.
    61. 61)
      • 155. Shaojun, H., Mathe, L., Teodorescu, R.: ‘A new method to implement resampled uniform PWM suitable for distributed control of modular multilevel converters’. 39th Annual Conf. of the IEEE Industrial Electronics Society (IECON 2013), Vienna, Austria, 2013, pp. 228233.
    62. 62)
      • 133. Dekka, A., Wu, B., Zargari, N.R.: ‘A novel modulation scheme and voltage balancing algorithm for modular multilevel converter’, IEEE Trans. Ind. Appl., 2016, 52, (1), pp. 432443.
    63. 63)
      • 139. Tu, Q., Xu, Z.: ‘Impact of sampling frequency on harmonic distortion for the modular multilevel converter’, IEEE Trans. Power Deliv., 2011, 26, (1), pp. 298306.
    64. 64)
      • 146. Dahidah, M.S.A., Konstantinou, G., Flourentzou, N., et al: ‘On comparing the symmetrical and non-symmetrical selective harmonic elimination pulse-width modulation technique for two-level three-phase voltage source converters’, IET Power Electron., 2010, 3, (6), pp. 829842.
    65. 65)
      • 174. Moon, J.-W., Park, J.-W., Kang, D.-W., et al: ‘A control method of HVDC-modular multilevel converter based on arm current under the unbalanced voltage condition’, IEEE Trans. Power Deliv., 2015, 30, (2), pp. 529536.
    66. 66)
      • 39. Teeuwsen, S.: ‘Modeling the trans-bay cable project as a voltage-source converter with modular multilevel converter design’. 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, July 2011, pp. 18.
    67. 67)
      • 106. Mohan, N., Undeland, T.M., Robbins, W.P.: ‘Power electronics-converters, applications and design’ (John Wiley & Sons, USA, 2003, 3rd edn. Media Enhanced Edition).
    68. 68)
      • 207. Dekka, A., Wu, B., Yaramasu, V., et al: ‘Dual-stage model predictive control with improved harmonic performance for modular multilevel converter’, IEEE Trans. Ind. Electron., 2016, 63, (10), pp. 60106019.
    69. 69)
      • 33. Nami, A., Zare, F.: ‘Multilevel converters in renewable energy systems’ (In-Tech, London, UK, 2010), ISBN 978-953-7619-52-7.
    70. 70)
      • 87. Gnanarathna, U.N., Gole, A.M., Jayasinghe, R.P.: ‘Efficient modeling of modular multilevel HVDC converters (MMC) on electromagnetic transient simulation programs’, IEEE Trans. Power Deliv., 2011, 26, pp. 316324.
    71. 71)
      • 5. Karim, A.M.H.A., Al Maskati, N.H., Sud, S.: ‘Status of gulf co-operation council (GCC) electricity grid system interconnection’. IEEE Power Engineering Society General Meeting, Denver, CO, USA, 2004, pp. 13851388.
    72. 72)
      • 32. Akagi, H.: ‘Classification, terminology, and application of the modular multilevel cascade converter (MMCC)’, IEEE Trans. Power Electron., 2011, 26, (11), pp. 31193130.
    73. 73)
      • 52. Zhang, Z., Kuang, J., Wang, X., et al: ‘Force commutated HVDC and SVC based on phase-shifted multi-converter modules’, IEEE Trans. Power Deliv., 1993, 8, (2), pp. 712718.
    74. 74)
      • 214. Li, X., Song, Q., Liu, W., et al: ‘Protection of nonpermanent faults on dc overhead lines in MMC-based HVDC systems’, IEEE Trans. Power Deliv., 2013, 28, (1), pp. 483490.
    75. 75)
      • 91. Kron, G.: ‘A method to solve very large physical systems in easy stages’, Transactions of the IRE Professional Group on Circuit Theory, 1953, PGCT-2, pp. 7190.
    76. 76)
      • 25. Andersen, B.R., Xu, L., Horton, P.J., et al: ‘Topologies for VSC transmission’, Power Eng. J., 2002, 16, (3), pp. 142150.
    77. 77)
      • 176. Zama, A., Mansour, S.A., Frey, D., et al: ‘A comparative assessment of different balancing control algorithms for the modular multilevel converter (MMC)’. 2016 18th European Conf. on Power Electronics and Applications (EPE'16 ECCE Europe), Karlsruhe, Germany, September 2016, pp. 110.
    78. 78)
      • 202. Liu, P., Wang, Y., Cong, W., et al: ‘Grouping-sorting-optimized model predictive control for a modular multilevel converter with reduced computational load’, IEEE Trans. Power Electron., 2016, 31, (3), pp. 18961907.
    79. 79)
      • 82. Adam, G.P., Williams, B.W.: ‘Half and full-bridge modular multilevel converter models for simulations of full-scale HVDC links and multiterminal DC grids’, IEEE J. Emerg. Sel. Top. Power Electron., 2014, 2, (4), pp. 10891108.
    80. 80)
      • 221. Merlin, M.M.C., Green, T.C., Mitcheson, P.D., et al: ‘The alternate arm converter: a new hybrid multilevel converter with dc-fault blocking capability’, IEEE Trans. Power Deliv., 2014, 29, (1), pp. 310317.
    81. 81)
      • 187. Bahrani, B., Debnath, S., Saeedifard, M.: ‘Circulating current suppression of the modular multilevel converter in a double-frequency rotating reference frame’, IEEE Trans. Power Electron., 2016, 31, (1), pp. 783792.
    82. 82)
      • 66. Babaei, E.: ‘A cascade multilevel converter topology with reduced number of switches’, IEEE Trans. Power Electron., 2008, 23, (6), pp. 26572664.
    83. 83)
      • 102. Bowes, S.R., Bird, B.M.: ‘Novel approach to the analysis and synthesis of modulation processes in power converters’, Proc. IEE, 1975, 122, (5), pp. 507513.
    84. 84)
      • 86. Chiniforoosh, S., Jatskevich, J., Yazdani, A., et al: ‘Definitions and applications of dynamic average models for analysis of power systems’, IEEE Trans. Power Deliv., 2010, 25, (4), pp. 26552669.
    85. 85)
      • 77. Wang, K., Li, Y., Zheng, Z., et al: ‘Voltage balancing and fluctuation-suppression methods of floating capacitors in a new modular multilevel converter’, IEEE Trans. Ind. Electron., 2013, 60, (5), pp. 19431954.
    86. 86)
      • 78. Du, S., Wu, B., Zargari, N.R., et al: ‘A flying-capacitor modular multilevel converter for a medium-voltage motor drive’, IEEE Trans. Power Electron., 2017, 32, (3), pp. 20812089.
    87. 87)
      • 201. Riar, B., Geyer, T., Madawala, U.: ‘Model predictive direct current control of modular multilevel converters: modeling, analysis, experimental evaluation’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 431439.
    88. 88)
      • 209. Bresesti, P., Kling, W.L., Hendriks, R.L., et al: ‘HVDC the connection of offshore wind farms to the transmission system’, IEEE Trans. Energy Convers., 2007, 22, (1), pp. 3743.
    89. 89)
      • 85. Sanders, S.R., Noworolski, J.M., Liu, X.Z., et al: ‘Generalized averaging method for power conversion circuits’, IEEE Trans. Power Electron., 1991, 6, (2), pp. 251259.
    90. 90)
      • 12. Agelidis, V.G., Demetriades, G.D., Flourentzou, N.: ‘Recent advances in high-voltage direct- current power transmission systems’. IEEE Int. Conf. on Industrial Technology, (ICIT 2006), Mumbai, India, 2006, pp. 206213.
    91. 91)
      • 110. Holmes, D.G., Lipo, T.A.: ‘Pulse width modulation for power converters: principles and practice, Series: IEEE press series on power Engineering’ (IEEE Press, USA, 2003), Available at http://books.google.es/books?id=8LGi1AjSfpcC.
    92. 92)
      • 138. Hu, P., Jiang, D.: ‘A level-increased nearest level modulation method for modular multilevel converters’, IEEE Trans. Power Electron., 2015, 30, (4), pp. 18361842.
    93. 93)
      • 49. Nakajima, T., Suzuki, H., Sakamoto, K., et al: ‘Multiple space vector control for self-commutated power converters’, IEEE Trans. Power Deliv., 1998, 13, (4), pp. 14181424.
    94. 94)
      • 53. Ooi, B.T., Wang, X.: ‘Boost-type PWM HVDC transmission system’, IEEE Trans. Power Deliv., 1991, 6, (4), pp. 15571563.
    95. 95)
      • 218. Li, X., Liu, W., Song, Q., et al: ‘An enhanced MMC topology with dc fault ride-through capability’. IECON 2013–39th Annual Conf. of the IEEE Industrial Electronics Society, Vienna, Austria, November 2013, pp. 61826188.
    96. 96)
      • 36. Akagi, H.: ‘Classification, terminology, and application of the modular multilevel cascade converter (MMCC)’, IEEE Trans. Power Electron., 2011, 26, (11), pp. 31193130.
    97. 97)
      • 22. Nestle, T.F., Stendius, L., Johansson, M.J., et al: ‘Powering troll with new technology’, ABB Rev., 2003, (2), pp. 1519, Available at http://clux.x-pec.com/files/fronter/ENE202%20-%20Elkraft%202/H%F8st/Anvendelser/hvdcLight_poweringTROLL.pdf.
    98. 98)
      • 112. Konstantinou, G.S., Agelidis, V.G.: ‘Performance evaluation of half-bridge cascaded multilevel converters operated with multicarrier sinusoidal PWM techniques’. 2009 4th IEEE Conf. on Industrial Electronics and Applications, Xi'an, China, May 2009, pp. 33993404.
    99. 99)
      • 97. Dekka, A., Wu, B., Yaramasu, V., et al: ‘Model predictive control with common-mode voltage injection for modular multilevel converter’, IEEE Trans. Power Electron., 2017, 32, (3), pp. 17671778.
    100. 100)
      • 21. Gunturi, S., Assal, J., Schneider, D., et al: ‘Innovative metal system for IGBT press pack modules’. IEEE Int. Symp. on Power Semiconductor Devices and ICs (ISPSD), Cambridge, UK, 2003, pp. 110113.
    101. 101)
      • 76. Li, B., Zhang, Y., Wang, G., et al: ‘A modified modular multilevel converter with reduced capacitor voltage fluctuation’, IEEE Trans. Ind. Electron., 2015, 62, (10), pp. 61086119.
    102. 102)
      • 230. Liu, H., Ma, K., Qin, Z., et al: ‘Lifetime estimation of mmc for offshore wind power HVDC application’, IEEE Trans. Emerg. Sel. Top. Power Electron., 2016, 4, (2), pp. 504511.
    103. 103)
      • 96. Perez, M.A., Lizana, R., Bernet, S., et al: ‘Control of arm capacitor voltages in modular multilevel converters’, IEEE Trans. Power Electron., 2016, 31, (2), pp. 17741784.
    104. 104)
      • 208. Adapa, R.: ‘High-wire act: HVDC technology: the state of the art’, IEEE Power Energy Mag., 2012, 10, (6), pp. 1829.
    105. 105)
      • 59. Agrawal, R., Jain, S.: ‘Comparison of reduced part count multilevel inverters (RPC-MLIS) for integration to the grid’, Electr. Power Energy Syst., 2017, 84, pp. 214224.
    106. 106)
      • 41. ABB: ‘Hvdc light gen 4’. Available at https://www.abb.com/systems/hvdc/.
    107. 107)
      • 171. Deng, F., Chen, Z.: ‘Voltage-balancing method for modular multilevel converters switched at grid frequency’, IEEE Trans. Ind. Electron., 2015, 62, (5), pp. 28352847.
    108. 108)
      • 104. Holtz, J.: ‘Pulsewidth modulation for electronic power conversion’, Proc. IEEE, 1994, 82, (8), pp. 11941214.
    109. 109)
      • 70. Chen, C., Adam, G.P., Finney, S., et al: ‘H-bridge modular multilevel converter: control strategy for improved DC fault ride-through capability without converter blocking’, IET Power Electron., 2015, 8, (10), pp. 19962008.
    110. 110)
      • 54. Xu, L., Agelidis, V.G.: ‘A VSC transmission system using flying capacitor multilevel converters and selective harmonic elimination PWM control’, Int. J. Emerging Electr. Power Syst., 2006, 5, (2), pp. 11761181.
    111. 111)
      • 149. Taghizadeh, H., Hagh, M.T.: ‘Harmonic elimination of cascade multilevel inverters with nonequal dc sources using particle swarm optimization’, IEEE Trans. Ind. Electron., 2010, 57, (11), pp. 36783684.
    112. 112)
      • 103. Holtz, J.: ‘Pulsewidth modulation-a survey’, IEEE Trans. Ind. Electron., 1992, 39, (5), pp. 410420.
    113. 113)
      • 193. Rodriguez, J., Kazmierkowski, M.P., Espinoza, J.R., et al: ‘State of the art of finite control set model predictive control in power electronics’, IEEE Trans. Ind. Inf., 2013, 9, (2), pp. 10031016.
    114. 114)
      • 167. Dekka, A., Wu, B., Zargari, N.R., et al: ‘Dynamic voltage balancing algorithm for modular multilevel converter: a unique solution’, IEEE Trans. Power Electron., 2016, 31, (2), pp. 952963.
    115. 115)
      • 144. Aguilera, R.P., Lezana, P., Konstantinou, G., et al: ‘Closed-loop SHE-PWM technique for power converters through model predictive control’. 41st Annual Conf. on IEEE Industrial Electronics Society (IECON), Yokohama, Japan, November 2015, in press.
    116. 116)
      • 3. Ashmore, C.: ‘Transmit the light fantastic [HVDC power transmission]’, Power Eng., 2006, 20, (2), pp. 2427.
    117. 117)
      • 81. Baruschka, L., Mertens, A.: ‘A new three-phase ac/ac modular multilevel converter with six branches in a hexagonal configuration’, IEEE Trans. Ind. Appl., 2013, 49, (3), pp. 14001410.
    118. 118)
      • 198. Cortes, P., Wilson, A., Kouro, S., et al: ‘Model predictive control of multilevel cascaded h-bridge inverters’, IEEE Trans. Ind. Electron., 2010, 57, (8), pp. 26912699.
    119. 119)
      • 14. Kimbark, E.D.: ‘Direct current transmission’, vol. I (Wiley-Interscience, USA, 1971), ISBN 0-471-47580-7.
    120. 120)
      • 195. Vazquez, S., Leon, J.I., Franquelo, L.G., et al: ‘Model predictive control: A review of its applications in power electronics’, IEEE Ind. Electron. Mag., 2014, 8, (1), pp. 1631.
    121. 121)
      • 162. Peng, H., Xie, R., Deng, W.K.Y., et al: ‘A capacitor voltage balancing method with fundamental sorting frequency for modular multilevel converters under staircase modulation’, IEEE Trans. Power Electron., 2016, 31, (11), pp. 78097822.
    122. 122)
      • 181. Teeuwsen, S.: ‘Simplified dynamic model of a voltage-sourced converter with modular multilevel converter design’. 2009 IEEE/PES Power Systems Conf. and Exposition (PSCE ’09), Seattle, WA, USA, March 2009, pp. 16.
    123. 123)
      • 4. Weimer, L.: ‘AC or DC: which way should China go?’, Mod. Power Syst., 2005, 25, (8), pp. 1117.
    124. 124)
      • 219. Kim, H., Kang, J., Kim, S., et al: ‘Dc fault protection for modular multilevel converter HVDC using asymmetrical unipolar full-bridge submodule’. 2015 9th Int. Conf. on Power Electronics and ECCE Asia (ICPE-ECCE Asia), Seoul, South Korea, June 2015, pp. 10831089.
    125. 125)
      • 13. Hingorani, N.G.: ‘Future directions for power electronics’. 2001 IEEE/PES Transmission and Distribution Conf. and Exposition, Seattle, WA, USA, 2001, pp. 11801181.
    126. 126)
      • 206. Dekka, A., Wu, B., Zargari, N.R.: ‘Minimization of dc-bus current ripple in modular multilevel converter under unbalanced conditions’, IEEE Trans. Power Electron., 2017, 32, (6), pp. 41254131.
    127. 127)
      • 88. Jianzhong, X., Chengyong, Z., Wenjing, L., et al: ‘Accelerated model of modular multilevel converters in PSCAD/EMTDC’, IEEE Trans. Power Deliv., 2013, 28, pp. 129136.
    128. 128)
      • 10. Arrillaga, J., Liu, Y.H., Watson, N.R.: ‘Flexible power transmission: the HVDC options’ (John Wiley & Sons, Ltd, Chichester, UK, Hoboken, NJ, 2007).
    129. 129)
      • 108. Zhang, Z., Thomsen, O.C., Andersen, M.A.: ‘Discontinuous PWM modulation strategy with the circuit-level decoupling concept of three-level neutral-point-clamped (NPC) inverter’, IEEE Trans. Ind. Electron., 2013, 60, (5), pp. 18971906.
    130. 130)
      • 11. Bahrman, M.P., Johnson, B.K.: ‘The ABCs of HVDC transmission technologies’, IEEE Power Energy Mag., 2007, 5, (2), pp. 3244.
    131. 131)
      • 1. Kalair, A., Abas, N., Khan, N.: ‘Comparative study of HVAC and HVDC transmission systems’, Renew. Sustain. Energy Rev., 2016, 59, pp. 16531675, ISSN1364-0321.
    132. 132)
      • 210. Soto, D., Green, T.C.: ‘A comparison of high-power converter topologies for the implementation of facts controllers’, IEEE Trans. Ind. Electron., 2002, 49, (5), pp. 10721080.
    133. 133)
      • 137. Konstantinou, G., Ceballos, S., Darus, R., et al: ‘Switching frequency analysis of staircase-modulated modular multilevel converters and equivalent PWM techniques’, IEEE Trans. Power Deliv., 2016, 31, (1), pp. 2836.
    134. 134)
      • 143. Turnbull, F.G.: ‘Selected harmonic reduction in static dc-ac inverters’, IEEE Trans. Commun. Electron., 1964, 83, pp. 374378.
    135. 135)
      • 163. Sasongko, F., Sekiguchi, K., Oguma, K., et al: ‘Theory and experiment on an optimal carrier frequency of a modular multilevel cascade converter with phase-shifted PWM’, IEEE Trans. Power Electron., 2016, 31, (5), pp. 34563471.
    136. 136)
      • 164. Sekiguchi, K., Khamphakdi, P., Hagiwara, M., et al: ‘A grid-level high-power BTB (back-to-back) system using modular multilevel cascade converters without common DC-link capacitor’, IEEE Trans. Ind. Appl., 2014, 50, (4), pp. 26482659.
    137. 137)
      • 172. Solas, E., Abad, G., Barrena, J., et al: ‘Modular multilevel converter with different submodule concepts – part I: capacitor voltage balancing method’, IEEE Trans. Ind. Electron., 2013, 60, (10), pp. 45254535.
    138. 138)
      • 73. Chaudhuri, T.: ‘Cross connected multilevel voltage source inverter topologies for medium voltage applications’. PhD thesis, EPFL, 2008.
    139. 139)
      • 83. Peralta, J., Saad, H., Dennetiere, S., et al: ‘Detailed and averaged models for a 401-level MMC – HVDC system’, IEEE Trans. Power Deliv., 2012, 27, pp. 15011508.
    140. 140)
      • 98. Lizana, R., Perez, M., Arancibia, D., et al: ‘Decoupled current model and control of modular multilevel converters’, IEEE Trans. Ind. Electron., 2015, 62, (9), pp. 53825392.
    141. 141)
      • 168. Siemaszko, D.: ‘Fast sorting method for balancing capacitor voltages in modular multilevel converters’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 463470.
    142. 142)
      • 125. Maheshwari, R., Munk-Nielsen, S., Busquets-Monge, S.: ‘Design of neutral-point voltage controller of a three-level NPC inverter with small dc-link capacitors’, IEEE Trans. Ind. Electron., 2013, 60, (5), pp. 18611871.
    143. 143)
      • 29. Flourentzou, N., Agelidis, V.G., Demetriades, G.D.: ‘VSC-based HVDC power transmission systems: An overview’, IEEE Trans. Power Electron., 2009, 24, pp. 592602.
    144. 144)
      • 34. Lai, J.S., Peng, F.Z.: ‘Multilevel converters - a new breed of power converters’, IEEE Trans. Ind. Appl., 1996, 32, (3), pp. 509517.
    145. 145)
      • 134. Meshram, P., Borghate, V.: ‘A simplified nearest level control (NLC) voltage balancing method for modular multilevel converter (MMC)’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 450462.
    146. 146)
      • 222. Friedrich, K.: ‘Modern HVDC plus application of VSC in modular multilevel converter topology’. 2010 IEEE Int. Symp. on Industrial Electronics, Bari, Italy, July 2010, pp. 38073810.
    147. 147)
      • 147. Shen, K., Zhao, D., Mei, J., et al: ‘Elimination of harmonics in a modular multilevel converter using particle swarm optimization-based staircase modulation strategy’, IEEE Trans. Ind. Electron., 2014, 61, (10), pp. 53115322.
    148. 148)
      • 224. Zhu, Z., Li, X., Rao, H., et al: ‘Testing a complete control and protection system for multi-terminal MMC HVDC links using hardware-in-the-loop simulation’. IECON 2014–40th Annual Conf. of the IEEE Industrial Electronics Society, Dallas, TX, USA, October 2014, pp. 44024408.
    149. 149)
      • 107. Ewanchuk, J., Salmon, J.: ‘Three-limb coupled inductor operation for paralleled multi-level three-phase voltage sourced inverters’, IEEE Trans. Ind. Electron., 2013, 60, (5), pp. 19791988.
    150. 150)
      • 122. Angulo, M., Lezana, P., Kouro, S., et al: ‘Level-shifted PWM for cascaded multilevel inverters with even power distribution’. IEEE Power Electronics Specialists Conf. (PESC), Orlando, FL, USA, June 2007, pp. 23732378.
    151. 151)
      • 154. Huang, S., Teodorescu, R., Mathe, L.: ‘Analysis of communication based distributed control of MMC for HVDC’. 2013 15th European Conf. on Power Electronics and Applications (EPE), Lille, France, 2013, pp. 110.
    152. 152)
      • 153. Du, S., Liu, J., Liu, T.: ‘Modulation and closed-loop-based dc capacitor voltage control for MMC with fundamental switching frequency’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 327338.
    153. 153)
      • 27. Carlsson, L.: ‘Classical’ HVDC: still continuing to evolve’, Mod. Power Syst., 2002, 22, (6), pp. 1921.
    154. 154)
      • 217. Xue, Y., Xu, Z.: ‘On the bipolar MMC-HVDC topology suitable for bulk power overhead line transmission: configuration, control, and dc fault analysis’, IEEE Trans. Power Deliv., 2014, 29, (6), pp. 24202429.
    155. 155)
      • 117. Shi, X., Wang, Z., Tolbert, L.M., et al: ‘A comparison of phase disposition and phase shift PWM strategies for modular multilevel converters’. 2013 IEEE Energy Conversion Congress and Exposition, Denver, CO, USA, September 2013, pp. 40894096.
    156. 156)
      • 200. Qin, J., Saeedifard, M.: ‘Predictive control of a modular multilevel converter for a back-to-back HVDC system’, IEEE Trans. Power Deliv., 2012, 27, (3), pp. 15381547.
    157. 157)
      • 169. Mei, J., Xiao, B., Shen, K., et al: ‘Modular multilevel inverter with new modulation method and its application to the photovoltaic grid-connected generator’, IEEE Trans. Power Electron., 2013, 28, (11), pp. 50635073.
    158. 158)
      • 156. Burlacu, P.D., Mathe, L., Teodorescu, R.: ‘Synchronization of the distributed PWM carrier waves for modular multilevel converters’. 2014 Int. Conf. on Optimization of Electrical and Electronic Equipment (OPTIM), Bran, Romania, 2014, pp. 553559.
    159. 159)
      • 128. Pan, Z., Peng, F.Z.: ‘A sinusoidal PWM method with voltage balancing capability for diode-clamped five-level converters’, IEEE Trans. Ind. Appl., 2009, 45, (3), pp. 10281034.
    160. 160)
      • 192. Liang, Y., Liu, J., Zhang, T., et al: ‘Arm current control strategy for MMC-HVDC under unbalanced conditions’, IEEE Trans. Power Deliv., 2017, 32, (1), pp. 125134.
    161. 161)
      • 205. Ben-Brahim, L., Gastli, A., Trabelsi, M., et al: ‘Modular multilevel converter circulating current reduction using model predictive control’, IEEE Trans. Ind. Electron., 2016, 63, (6), pp. 38573866.
    162. 162)
      • 124. Busquets-Monge, S., Maheshwari, R., Munk-Nielsen, S.: ‘Overmodulation of n-level three-leg dc–ac diode-clamped converters with comprehensive capacitor voltage balance’, IEEE Trans. Ind. Electron., 2013, 60, (5), pp. 18721883.
    163. 163)
      • 177. Leon, A.E., Amodeo, S.J.: ‘Energy balancing improvement of modular multilevel converters under unbalanced grid conditions’, IEEE Trans. Power Electron., 2017, 32, (8), pp. 66286637.
    164. 164)
      • 161. Luo, Y., Li, Z., Xu, L., et al: ‘An adaptive voltage balancing method for high-power modular multilevel converters’, IEEE Trans. Power Electron., 2017, PP, (99), pp. 11.
    165. 165)
      • 65. Gupta, K.K., Jain, S.: ‘A novel multilevel inverter based on switched dc sources’, IEEE Trans. Ind. Electron., 2014, 61, (7), pp. 32693278.
    166. 166)
      • 216. Zeng, R., Xu, L., Yao, L., et al: ‘Precharging and DC fault ride-through of hybrid MMC-based HVDC systems’, IEEE Trans. Power Deliv., 2015, 30, (3), pp. 12981306.
    167. 167)
      • 232. Ma, F., Xu, Q., He, Z., et al: ‘A railway traction power conditioner using a modular multilevel converter and its control strategy for the high-speed railway system’, IEEE Trans. Transp. Electrification, 2016, 2, (1), pp. 96109.
    168. 168)
      • 45. SIEMENS: ‘The efficient way’. Available at http://www.energy.siemens.com/ru/pool/hq/power-transmission/FACTS/SVC\PLUS\ The\%20efficient\%20Way.pdf.
    169. 169)
      • 196. Narimani, M., Wu, B., Yaramasu, V., et al: ‘Finite control-set model predictive control (FCS-MPC) of nested neutral pointclamped (NNPC) converter’, IEEE Trans. Power Electron., 2015, 30, (12), pp. 72627269.
    170. 170)
      • 92. Venjakob, O., Kubera, S., Hibbert-Caswell, R., et al: ‘Setup and performance of the real-time simulator used for hardware scheme for offshore applications’. Int. Conf. on Power Systems Transients (IPST2013), Vancouver, Canada, 2013.
    171. 171)
      • 116. Mei, J., Shen, K., Xiao, B., et al: ‘A new selective loop bias mapping phase disposition PWM with dynamic voltage balance capability for the modular multilevel converter’, IEEE Trans. Ind. Electron., 2014, 61, (2), pp. 798807.
    172. 172)
      • 223. Wang, W., Barnes, M.: ‘Power flow algorithms for multi-terminal VSC-HVDC with droop control’, IEEE Trans. Power Syst., 2014, 29, (4), pp. 17211730.
    173. 173)
      • 24. Andersen, B., Barker, C.: ‘A new era in HVDC?’, IEE Rev., 2000, 46, (2), pp. 3339.
    174. 174)
      • 69. Adam, G.P., Ahmed, K.H., Williams, B.W.: ‘Mixed cells modular multilevel converter’. Proc. 23rd IEEE Int. Symp. on Industrial Electronics, Istanbul, Turkey, 2014, pp. 13901395.
    175. 175)
      • 56. Gui-Jia, S.: ‘Multilevel DC-link inverter’, IEEE Trans. Ind. Appl., 2005, 41, (3), pp. 848854.
    176. 176)
      • 188. Li, Z., Wang, P., The Chu, Z., et al: ‘An inner current suppressing method for modular multilevel converters’, IEEE Power Electron. Lett., 2013, 28, (11), pp. 48734879.
    177. 177)
      • 28. Persson, A., Carlsson, L.: ‘New technologies in HVDC converter design’. IEE Conf. Publication AC and DC Power Transmission, London, UK, 1996, pp. 387392.
    178. 178)
      • 23. Asplund, G.: ‘Application of HVDC light to power system enhancement’. 2000, pp. 24982503.
    179. 179)
      • 199. Perez, M., Cortes, P., Rodriguez, J.: ‘Predictive control algorithm technique for multilevel asymmetric cascaded H-bridge inverters’, IEEE Trans. Ind. Electron., 2008, 55, (12), pp. 43544361.
    180. 180)
      • 136. Deng, Y., Harley, R.: ‘Space-vector versus nearest-level pulse width modulation for multilevel converters’, IEEE Trans. Power Electron., 2015, 30, (6), pp. 29622974.
    181. 181)
      • 111. van der Merwe, W.: ‘Natural balancing of the 2-cell modular multilevel converter’, IEEE Trans. Ind. Appl., 2014, 50, (6), pp. 40284035.
    182. 182)
      • 48. Agelidis, V.G., Xu, L.: ‘A novel HVDC system based on flying capacitor multilevel PWM converters’. CIGRE/IEEE PES Int. Symp. on Quality and Security of Electric Power Delivery Systems, Wuhan, Hubei, China, 2001.
    183. 183)
      • 99. Zhang, F., Joos, G.: ‘A predictive nearest level control of modular multilevel converter’. 2015 IEEE Applied Power Electronics Conf. and Exposition (APEC), Charlotte, NC, USA, March 2015, pp. 28462851.
    184. 184)
      • 57. Gupta, K.K., Ranjan, A., Bhatnagar, P., et al: ‘Multilevel inverter topologies with reduced device count: a review’, IEEE Trans. Power Electron., 2016, 31, (1), pp. 135151.
    185. 185)
      • 61. Najafi, E., Yatim, A.H.M., Samosir, A.S.: ‘A new topology – reversing voltage (RV) – for multilevel inverters’. pp. 604608.
    186. 186)
      • 64. Kangarlu, M.F., Babaei, E.: ‘A generalized cascaded multilevel inverter using series connection of submultilevel inverters’, IEEE Trans. Power Electron., 2013, 28, (2), pp. 625636.
    187. 187)
      • 151. Hagiwara, M., Akagi, H.: ‘Control and experiment of pulse width modulated modular multilevel converters’, IEEE Trans. Power Electron., 2009, 24, (7), pp. 17371746.
    188. 188)
      • 126. Zaragoza, J., Pou, J., Ceballos, S., et al: ‘Voltage-balance compensator for a carrier-based modulation in the neutral-point-clamped converter’, IEEE Trans. Ind. Electron., 2009, 56, (2), pp. 305314.
    189. 189)
      • 2. Long, W., Nilsson, S.: ‘HVDC transmission: yesterday and today’, IEEE Power Energy Mag., 2007, 5, (2), pp. 2231.
    190. 190)
      • 186. Tu, Q., Xu, Z., Xu, L.: ‘Reduced switching-frequency modulation and circulating current suppression for modular multilevel converters’, IEEE Trans. Power Deliv., 2011, 26, (3), pp. 20092017.
    191. 191)
      • 15. Asplund, G.: ‘Ultra high voltage transmission’, ABB Rev., 2007, (2), pp. 2227, Available at https://library.e.abb.com/public/9e16e26d65ab7339c12572fe004deb21/22-27%202M733_ENG72dpi.pdf.
    192. 192)
      • 178. Fan, S., Zhang, K., Xiong, J., et al: ‘An improved control system for modular multilevel converters with new modulation strategy and voltage balancing control’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 358371.
    193. 193)
      • 51. Kuang, J., Ooi, B.T.: ‘Series connected voltage-source converter modules for force-commutated SVC and DC-transmission’, IEEE Trans. Power Deliv., 1994, 9, (2), pp. 977983.
    194. 194)
      • 182. Darus, R., Pou, J., Konstantinou, G., et al: ‘Controllers for eliminating the ac components in the circulating current of modular multilevel converters’, IET Power Electron., 2016, 9, (1), pp. 18.
    195. 195)
      • 60. Khosroshahi, M.T.: ‘Crisscross cascade multilevel inverter with a reduction in a number of components’, IET Power Electron., 2014, 7, (12), pp. 29142924.
    196. 196)
      • 140. Darus, R., Pou, J., Konstantinou, G., et al: ‘A modified voltage balancing algorithm for the modular multilevel converter: evaluation for the staircase and phase-disposition PWM’, IEEE Trans. Power Electron., 2015, 30, (8), pp. 41194127.
    197. 197)
      • 84. Saad, H., Peralta, J., Dennetiere, S., et al: ‘Dynamic averaged and simplified models for MMC-based HVDC transmission systems’, IEEE Trans. Power Deliv., 2013, 28, pp. 17231730.
    198. 198)
      • 89. Kron, G.: ‘A Set of principles to interconnect the solutions of physical systems’, J. Appl. Phys., 1953, 24, pp. 965980.
    199. 199)
      • 9. Dijkhuizen, F.: ‘Multilevel converters: review, form, function and motivation’. Proc. EVER, Monte Carlo, Monaco, 2012.
    200. 200)
      • 50. Lindberg, A., Larsson, T.: ‘PWM and control of three level voltage source converters in an HVDC back-to-back station’. IEE Conf. AC and DC Power Trans., London, UK, 1996, pp. 297302.
    201. 201)
      • 159. Zhou, Y., Jiang, D., Hu, P., et al: ‘A prototype of modular multilevel converters’, IEEE Trans. Power Electron., 2014, 29, (7), pp. 32673278.
    202. 202)
      • 37. Perez, M., Bernet, S., Rodriguez, J., et al: ‘Circuit topologies, modeling, control schemes, and applications of modular multilevel converters’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 417.
    203. 203)
      • 44. Pereira, M., Retzmann, D., Lottes, J., et al: ‘Svc plus: an MMC STATCOM for network and grid access applications’. 2011 IEEE PowerTech, Trondheim, June 2011, pp. 15.
    204. 204)
      • 132. Deng, Y., Wang, Y., Teo, K.H., et al: ‘A simplified space vector modulation scheme for multilevel converters’, IEEE Trans. Power Electron., 2016, 31, (3), pp. 18731886.
    205. 205)
      • 90. Wexler, A., Dobrowolski, J.A., Hammad, A.E.: ‘Solution of large, sparse systems in design and analysis’. 1975 IEEE-MTT-S Int. Microwave Symp., Palo Alton, CA, USA, 1975, pp. 202203.
    206. 206)
      • 191. Guan, M., Xu, Z.: ‘Modeling and control of a modular multilevel converter-based HVDC system under unbalanced grid conditions’, IEEE Trans. Power Electron., 2012, 27, (12), pp. 48584867.
    207. 207)
      • 58. Hinago, Y., Koizumi, H.: ‘A single-phase multilevel inverter using switched series/parallel DC voltage sources’, IEEE Trans. Ind. Electron., 2010, 57, (8), pp. 26432650.
    208. 208)
      • 47. Xu, L., Agelidis, V.G., Acha, E.: ‘Steady-state operation of HVDC power transmission systems with voltage-source converters and simultaneous var compensation’. European Power Electronics Conf. (EPE 2001), Graz, Austria, 2001.
    209. 209)
      • 179. Saeedifard, M., Iravani, R.: ‘Dynamic performance of a modular multilevel back-to-back HVDC system’, IEEE Trans. Power Deliv., 2010, 25, (4), pp. 29032912.
    210. 210)
      • 145. Fei, W., Du, X., Wu, B.: ‘A generalized half-wave symmetry SHE-PWM formulation for multilevel voltage inverters’, IEEE Trans. Ind. Electron., 2010, 57, (9), pp. 30303038.
    211. 211)
      • 123. McGrath, B.P., Holmes, D.G.: ‘Enhanced voltage balancing of a flying capacitor multilevel converter using phase disposition (PD) modulation’, IEEE Trans. Power Electron., 2011, 26, (7), pp. 19331942.
    212. 212)
      • 220. Oliveira, R., Yazdani, A.: ‘A modular multilevel converter with dc fault handling capability and enhanced efficiency for HVDC system applications’, IEEE Trans. Power Electron., 2017, 32, (1), pp. 1122.
    213. 213)
      • 160. Li, Z., Gao, F., Xu, F., et al: ‘Power module capacitor voltage balancing method for a ±350-kV/1000-MW modular multilevel converter’, IEEE Trans. Power Electron., 2016, 31, (6), pp. 39773984.
    214. 214)
      • 197. Vargas, R., Rodriguez, J., Rojas, C., et al: ‘Predictive control of an induction machine fed by a matrix converter with increased efficiency and reduced common-mode voltage’, IEEE Trans. Energy Convers., 2014, 29, (2), pp. 473485.
    215. 215)
      • 127. Pou, J., Zaragoza, J., Ceballos, S., et al: ‘A carrier-based PWM strategy with zero-sequence voltage injection for a three-level neutral-point-clamped converter’, IEEE Trans. Power Electron., 2012, 27, (2), pp. 642651.
    216. 216)
      • 72. Nami, A., Wang, L., Dijkhuizen, F., et al: ‘Five level cross-connected cell for cascaded converters’. Proc. EPE 2013 ECCE Europe, Lille, France, 3–5 September 2013.
    217. 217)
      • 16. Carroll, E., Siefken, J.: ‘IGCTs: moving on the right track’. Power Electron. Technol., 2002, V.26, pp. 1618.
    218. 218)
      • 121. Lezana, P., Action, R., Silva, C.: ‘Phase-disposition PWM implementation for a hybrid multicell converter’, IEEE Trans. Ind. Electron., 2013, 60, (5), pp. 19361942.
    219. 219)
      • 213. SIEMENS: ‘The smart way HVDC plus-one step ahead’. Available at https://www.energy.siemens.com/us/en/power-transmission/hvdc/hvdcplus/.
    220. 220)
      • 7. Hammons, T.J., Willingham, M., Mak, K.N., et al: ‘Generation and transmission improvements in developing countries’, IEEE Trans. Energy Convers., 1999, 14, (3), pp. 760765.
    221. 221)
      • 189. Zhang, M., Huang, L., Yao, W., et al: ‘Circulating harmonic current elimination of a cps-PWM-based modular multilevel converter with a plug-in repetitive controller’, IEEE Trans. Power Electron., 2014, 29, (4), pp. 20832097.
    222. 222)
      • 150. Adam, G., Anaya-Lara, O., Burt, G.M., et al: ‘Modular multilevel inverter: pulse width modulation and capacitor balancing technique’, IET Power Electron., 2010, 3, (5), pp. 702715.
    223. 223)
      • 6. Hammons, T.J., Woodford, D., Loughran, J., et al: ‘Role of HVDC transmission in future energy development’, IEEE Power Eng. Rev., 2000, 20, (2), pp. 1025.
    224. 224)
      • 62. Najafi, E., Yatim, A.H.M.: ‘Design and implementation of a new multilevel inverter topology’, IEEE Trans. Ind. Electron., 2012, 59, (11), pp. 41484154.
    225. 225)
      • 190. Moon, J.-W., Kim, C.-S., Park, J.-W., et al: ‘Circulating current control in MMC under the unbalanced voltage’, IEEE Trans. Power Deliv., 2013, 28, (3), pp. 19521959.
    226. 226)
      • 184. Ngquist, L., Antonopoulos, A., Siemaszko, D., et al: ‘Inner control of modular multilevel converters an approach using an open-loop estimation of stored energy’. 2010 Int. Power Electronics Conf. (IPEC), Sapporo, Japan, June 2010, pp. 15791585.
    227. 227)
      • 74. Sleiman, M., Blanchette, H.F., Al-Haddad, K., et al: ‘A new 7L-PUC multi-cells modular multilevel converter for AC–AC and AC–DC applications’. Proc. 2015 IEEE Int. Conf. on Industrial Technology, Seville, Spain, 2015, pp. 25142519.
    228. 228)
      • 67. Mokhberdoran, A., Ajami, A.: ‘Symmetric and asymmetric design and implementation of new cascaded multilevel inverter topology’, IEEE Trans. Power Electron., 2014, 29, (12), pp. 67126724.
    229. 229)
      • 157. Mathe, L., Burlacu, P.D., Teodorescu, R.: ‘Control of a modular multilevel converter with reduced internal data exchange’, IEEE Trans. Ind. Inf., 2017, 13, (1), pp. 248257.
    230. 230)
      • 115. Darius, R., Pou, J., Konstantinou, G., et al: ‘Circulating current control and evaluation of carrier dispositions in modular multilevel converters’. IEEE ECCE Asia Down under (ECCE Asia, 2013), Melbourne, VIC, Australia, June 2013, pp. 332338.
    231. 231)
      • 227. Wang, Y., Yuan, Z., Fu, J.: ‘A novel strategy on the smooth connection of an offline MMC station into MTDC systems’, IEEE Trans. Power Deliv., 2016, 31, (2), pp. 568574.
    232. 232)
      • 131. Dekka, A., Wu, B., Zargari, N.R., et al: ‘A space-vector PWM-based voltage-balancing approach with reduced current sensors for the modular multilevel converter’, IEEE Trans. Ind. Electron., 2016, 63, (5), pp. 27342745.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2018.5734
Loading

Related content

content/journals/10.1049/iet-pel.2018.5734
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address