access icon free Parallel-connected buck converters controlled by capacitor current feedback based PT with current-sharing ability

Parallel-connected power converters have been widely used in the application scenarios required high power to deal with the high load current. In this study, the pulse train (PT) controller with the advantages of fast response speed and simple structure is newly applied to the parallel-connected buck converters with current-sharing ability. However, as the converters operated in continuous conduction mode, undesirable low-frequency voltage oscillation will be brought about by the PT control method. To resolve this problem, a novel capacitor-current-feedback-based PT (CCF-PT) control method is proposed to eliminate the low-frequency oscillation of the parallel-connected buck converters. The approximate discrete time model of the CCF-PT-controlled buck converters is established, and the bifurcation diagrams of output voltage and inductor current changing along with the current scale factor, the capacitor-current-feedback coefficient and the load resistance are drawn to show the operation stability of the converters. Simulation and experimental results are obtained, which indicate that the proposed parallel-connected buck converters with CCF-PT control have excellent performance such as fast response, wide load range and effective suppression of low-frequency oscillation.

Inspec keywords: bifurcation; inductors; power convertors; feedback; circuit stability; sampled data systems; voltage control; discrete time systems; capacitors; electric current control

Other keywords: inductor current; capacitor-current-feedback-based pulse train control method; current scale factor; load resistance; approximate discrete time model; low-frequency voltage oscillation; CCF-PT-controlled buck converters; high load current; output voltage bifurcation diagrams; fast response speed; parallel-connected buck converters; pulse train controller; capacitor-current-feedback-based PT; parallel-connected power converters; current-sharing ability; continuous conduction mode; capacitor-current-feedback coefficient

Subjects: Power convertors and power supplies to apparatus; Control of electric power systems; Voltage control; Discrete control systems; Power electronics, supply and supervisory circuits; Current control

References

    1. 1)
      • 13. Qin, M., Xu, J.P.: ‘Improved pulse regulation control technique for switching DC–DC converters operating in DCM’, IEEE Trans. Ind. Electron., 2013, 60, (5), pp. 18191830.
    2. 2)
      • 1. Lyu, J., Zhang, J.W., Cai, X., et al: ‘Circulating current control strategy for parallel full-scale wind power converters’, IET Power Electron., 2016, 9, (4), pp. 639647.
    3. 3)
      • 10. Carvalho, S.D.S., Ahsanuzzaman, S.M., Prodić, A.: ‘A low-volume multi-phase interleaved DC–DC converter for high step-down applications with auto-balancing of phase currents’. 2017 IEEE Applied Power Electronics Conf. Exposition (APEC), Tampa, FL, 2017, pp. 142148.
    4. 4)
      • 21. Sha, J., Xu, J.P., Zhong, S., et al: ‘Valley current mode pulse train control technique for switching DC–DC converters’, Electron. Lett., 2014, 50, (4), pp. 311313.
    5. 5)
      • 8. Liu, D., Deng, F.J., Gong, Z., et al: ‘Input-parallel output-parallel three-level DC/DC converters with interleaving control strategy for minimizing and balancing capacitor ripple currents’, IEEE J. Emerg. Sel. Top. Power Electron., 2017, 5, (3), pp. 11221132.
    6. 6)
      • 4. Oberto, V.P., Depexe, M.D., Naidon, T.C., et al: ‘A decentralized current sharing control strategy for output parallel-connected DC–DC converters with true redundancy’. 2014 11th IEEE/IAS Int. Conf. Industrial Applications, Juiz de Fora, 2014, pp. 18.
    7. 7)
      • 5. Su, J.T., Lin, C.W.: ‘Auto-tuning scheme for improved current sharing of multiphase DC–DC converters’, IET Power Electron., 2012, 5, (9), pp. 16051613.
    8. 8)
      • 11. Hong, S.J., Lee, C.B., Kim, H.S., et al: ‘Feedforward compensation method of output voltage for improving dynamic characteristic of AC/DC PWM converter in DC distribution’. 2015 18th Int. Conf. Electrical Machines and Systems (ICEMS), Pattaya, 2015, pp. 17021708.
    9. 9)
      • 7. Jiang, C.R., Du, H.B., Wen, G.H.: ‘Current sharing control for parallel DC–DC buck converters based on consensus theory’. IEEE Int. Conf. Control & Automation (ICCA), Ohrid, Macedonia, 2017, pp. 536540.
    10. 10)
      • 12. Yang, Y., Zhou, K.L., Cheng, M.: ‘Phase compensation resonant controller for PWM converters’, IEEE Trans. Ind. Inf., 2013, 9, (2), pp. 957964.
    11. 11)
      • 20. Wang, J.P., Xu, J.P., Zhou, G.H., et al: ‘Pulse-train-controlled CCM buck converter with small ESR output-capacitor’, IEEE Trans. Ind. Electron., 2013, 60, (12), pp. 58755881.
    12. 12)
      • 3. Hedayati, M.H., John, V.: ‘Integrated common-mode inductor design for parallel interleaved converters’, IET Power Electron., 2016, 9, (10), pp. 21302138.
    13. 13)
      • 22. Sha, J., Xu, J.P., Xu, L.J., et al: ‘Multi-period analysis of current-mode pulse-train controlled continuous conduction mode converter’, Acta Phys. Sin., 2014, 63, (24), p. 248401.
    14. 14)
      • 9. Chae, S.Y., Song, Y.J., Park, S., et al: ‘Digital current sharing method for parallel interleaved DC–DC converters using input ripple voltage’, IEEE Trans. Ind. Inf., 2012, 8, (3), pp. 536544.
    15. 15)
      • 14. Qin, M., Xu, J.P.: ‘Multiduty ratio modulation technique for switching DC–DC converters operating in discontinuous conduction mode’, IEEE Trans. Ind. Electron., 2010, 57, (10), pp. 34973507.
    16. 16)
      • 16. Sha, J., Xu, D., Chen, Y.M., et al: ‘A peak-capacitor-current pulse-train-controlled buck converter with fast transient response and a wide load range’, IEEE Trans. Ind. Electron., 2016, 63, (3), pp. 15281538.
    17. 17)
      • 2. Gonzalez-Prieto, I., Duran, M.J., Barrero, F., et al: ‘Impact of post-fault flux adaptation on six-phase induction motor drives with parallel converters’, IEEE Trans. Power Electron., 2017, 32, (1), pp. 515528.
    18. 18)
      • 15. Xu, J.P., Wang, J.P.: ‘Bifrequency pulse-train control technique for switching DC–DC converters operating in DCM’, IEEE Trans. Ind. Electron., 2011, 58, (8), pp. 36583667.
    19. 19)
      • 17. Sha, J., Xu, J.P., Xu, L.J., et al: ‘Capacitor current feedback pulse train control technique for switching DC–DC converters’, Electron. Lett., 2014, 50, (15), pp. 10881090.
    20. 20)
      • 18. Yu, D.S., Wang, L., Geng, Y.S., et al: ‘Pulse train controlled buck converter with coupled inductors’, IET Power Electron., 2017, 10, (10), pp. 12311239.
    21. 21)
      • 6. Chaves, B.B., Brito, F.J.B., Pacheco, J.O., et al: ‘DC–DC converter based on multistate switching cell capable to achieve current sharing’. 2016 12th IEEE Int. Conf. Industrial Applications (INDUSCON), Curitiba, 2016, pp. 17.
    22. 22)
      • 19. Wang, J.P., Xu, J.P., Zhou, G.H., et al: ‘Analysis of low-frequency oscillation phenomenon in the pulse train controlled buck converter’, Acta Phys. Sin., 2011, 60, (4), p. 048402(1-10).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2018.5627
Loading

Related content

content/journals/10.1049/iet-pel.2018.5627
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading