http://iet.metastore.ingenta.com
1887

Quadratic buck–boost converter with reduced input current ripple and wide conversion range

Quadratic buck–boost converter with reduced input current ripple and wide conversion range

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study introduces an advanced DC–DC power converter with two main objectives, (i) to achieve a wide range of voltage gain, which means the converter may work over a wide range of input voltage for a fixed desired output voltage and (ii) to achieve a reduced input current ripple. Those features are highly desired in renewable energy applications, for example with photovoltaic panels and fuel cells. The proposed converter was designed in a structure in which the input voltage is composed by the difference of two inductor currents, the currents through inductors are driven with transistors that may have different duty cycle, this allows the current ripple cancellation. In addition, the structure of the converter provides a quadratic type voltage gain, which leads to a wide range of operation voltage. The converter achieves both the wire range of voltage gain and current ripple cancellation, nonetheless, the buck–boost capability is also provided. The input current ripple reduction helps preserve the renewable energy sources since they suffer deterioration when current with considerable ripple is drawn from them. Dynamic and steady-state analysis are performed along with the components sizing. Simulation and experimental results are provided to demonstrate the principle of the proposition.

References

    1. 1)
      • 1. Bi, H., Jia, C.: ‘Common grounded wide voltage-gain range dc–dc converter for fuel cell vehicles’, IET Power Electron., 2019, 12, (5), pp. 11951204.
    2. 2)
      • 2. Fuzato, G.H.F., Aguiar, C.R., Bastos, R.F., et al: ‘Evaluation of an interleaved boost converter powered by fuel cells and connected to the grid via voltage source inverter’, IET Power Electron., 2018, 11, (10), pp. 16611672.
    3. 3)
      • 3. Naik, M.V., Samuel, P.: ‘Analysis of ripple current, power losses and high efficiency of DC-DC converters for fuel cell power generating systems’, Renew. Sust. Energy Rev., 2016, 59, pp. 10801088.
    4. 4)
      • 4. Zhang, X., Zhao, T., Mao, W., et al: ‘Multilevel inverters for grid-connected photovoltaic applications: examining emerging trends’, IEEE Power Electron. Mag., 2018, 5, (4), pp. 3241.
    5. 5)
      • 5. Heydari, M., Khoramikia, H., Fatemi, A.: ‘High-voltage gain SEPIC-based DC–DC converter without coupled inductor for PV systems’, IET Power Electron., 2019, 12, (8), pp. 21182127.
    6. 6)
      • 6. Rivera-Espinosa, M. del Rosario, Alejandre-López, A.Y., Pedraza-Barrón, J.E., et al: ‘A high step-up DC-DC converter with MPPT for PV application’. 2017 IEEE Int. Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico, November 2017, pp. 16.
    7. 7)
      • 7. Seyed Mahmoodieh, M.E., Deihimi, A.: ‘Battery-integrated multi-input step-up converter for sustainable hybrid energy supply’, IET Power Electron., 2019, 12, (4), pp. 777789.
    8. 8)
      • 8. Ahmad, A., Bussa, V.K., Singh, R.K., et al: ‘Quadratic boost derived hybrid multi-output converter’, IET Power Electron., 2017, 10, (15), pp. 20422054.
    9. 9)
      • 9. Haghighian, S.K., Tohidi, S., Feyzi, M.R., et al: ‘Design and analysis of a novel SEPIC-based multi-input DC/DC converter’, IET Power Electron., 2017, 10, (12), pp. 13931402.
    10. 10)
      • 10. MT: ‘Nexa (310-0027) power module user's manual’. Available at faculty.stust.edu.tw/wcchang/MAN5100078.pdf.
    11. 11)
      • 11. Erickson, R.W., Maksimovic, D.: ‘Fundamentals of power electronics’ (Springer, USA, 2001).
    12. 12)
      • 12. Rosas-Caro, J.C., Ramirez, J.M., Peng, F.Z., et al: ‘A DC-DC multilevel boost converter’, IET Power Electron., 2010, 3, (1), pp. 129137.
    13. 13)
      • 13. Lenk, R.: ‘Practical design of power supplies’ (IEEE-Press, USA, 2005).
    14. 14)
      • 14. Shaneh, M., Niroomand, M., Adib, E.: ‘Non-isolated interleaved bidirectional DC–DC converter with high step voltage ratio and minimum number of switches’, IET Power Electron., 2019, 12, (6), pp. 15101520.
    15. 15)
      • 15. Babaei, E., Abbasnezhad, A., Sabahi, M., et al: ‘Analysis and design of a soft-switching boost DC/DC converter’, IET Power Electron., 2017, 10, (11), pp. 13531362.
    16. 16)
      • 16. Patidar, K., Umarikar, A.C.: ‘High step-up pulse-width modulation DC–DC converter based on quasi-z-source topology’, IET Power Electron., 2015, 8, (4), pp. 477488.
    17. 17)
      • 17. Li, F., Liu, H., Zhang, C., et al: ‘Novel high step-up dual switches converter with reduced power device voltage stress for distributed generation system’, IET Power Electron., 2017, 10, (14), pp. 18001809.
    18. 18)
      • 18. Axelrod, B., Berkovich, Y., Shenkman, A., et al: ‘Diode-capacitor voltage multipliers combined with boost-converters: topologies and characteristics’, IET Power Electron., 2012, 5, (6), pp. 873884.
    19. 19)
      • 19. Al-Saffar, M.A., Ismail, E.H.: ‘A high voltage ratio and low stress DCDC converter with reduced input current ripple for fuel cell source’, Renew. Energy, 2015, 82, (Suppl. C), pp. 3543, International Conference on Renewable Energy: Generation and Applications (ICREGA 2014).
    20. 20)
      • 20. Rosas-Caro, J.C., Valdez-Resendiz, J.E., Mayo-Maldonado, J.C., et al: ‘Quadratic buck–boost converter with positive output voltage and minimum ripple point design’, IET Power Electron., 2018, 11, (7), pp. 13061313.
    21. 21)
      • 21. Rosas-Caro, J.C., Sanchez, V.M., Valdez-Resendiz, J.E., et al: ‘Quadratic buck–boost converter with positive output voltage and continuous input current for PEMFC systems’, Int. J. Hydrog. Energy, 2017, 42, (51), pp. 3040030406.
    22. 22)
      • 22. García-Vite, P.M., del Rosario Rivera-Espinosa, M., Alejandre-López, A., et al: ‘Analysis and implementation of a step-up power converter with input current ripple cancellation’, Int. J. Circuit Theory Appl., 2018, 46, pp. 13381357.
    23. 23)
      • 23. Ye, Y.-m., Cheng, K.W.E.: ‘Quadratic boost converter with low buffer capacitor stress’, IET Power Electron., 2014, 7, (5), pp. 11621170.
    24. 24)
      • 24. Loera-Palomo, R., Morales-saldaña, J.A., Palacios-Hernández, E.: ‘Quadratic step-down dc-dc converters based on reduced redundant power processing approach’, IET Power Electron., 2013, 6, (1), pp. 136145.
    25. 25)
      • 25. Morales-Saldana, J.A., Loera-Palomo, R., Palacios-Hernandez, E., et al: ‘Modelling and control of a dc-dc quadratic boost converter with R2P2’, IET Power Electron., 2014, 7, (1), pp. 1122.
    26. 26)
      • 26. Reyes-Malanche, J.A., Vázquez, N., Leyva-Ramos, J.: ‘Switched-capacitor quadratic buck converter for wider conversion ratios’, IET Power Electron., 2015, 8, (12), pp. 23702376.
    27. 27)
      • 27. Zhang, N., Sutanto, D., Muttaqi, K.M., et al: ‘High-voltage-gain quadratic boost converter with voltage multiplier’, IET Power Electron., 2015, 8, (12), pp. 25112519.
    28. 28)
      • 28. Miao, S., Wang, F., Ma, X.: ‘A new transformerless buck–boost converter with positive output voltage’, IEEE Trans. Ind. Electron., 2016, 63, (5), pp. 29652975.
    29. 29)
      • 29. H. F. C. Technologies: ‘Horizon fuel cell technologies web page’. Available at https://www.horizonfuelcell.com/h-series-stacks.
    30. 30)
      • 30. Gao, D., Jin, Z., Liu, J., et al: ‘An interleaved step-up/step-down converter for fuel cell vehicle applications’, Int. J. Hydrog. Energy, 2016, 41, (47), pp. 2242222432.
    31. 31)
      • 31. Vázquez, N., Reyes-Malanche, J.A., Vázquez, E., et al: ‘Delayed quadratic buck converter’, IET Power Electron., 2016, 9, (13), pp. 25342542.
    32. 32)
      • 32. Choi, W., Enjeti, P.N., Howze, J.W., et al: ‘An experimental evaluation of the effects of ripple current generated by the power conditioning stage on a proton exchange membrane fuel cell stack’, J. Mater. Eng. Perform., 2004, 13, (3), pp. 257264.
    33. 33)
      • 33. Balog, R.S., Krein, P.T.: ‘Coupled-inductor filter: a basic filter building block’, IEEE Trans. Power Electron., 2013, 28, (1), pp. 537546.
    34. 34)
      • 34. Nag, S.S., Mishra, S., Joshi, A.: ‘A passive filter building block for input or output current ripple cancellation in a power converter’, IEEE J. Emerging Sel. Topics Power Electron., 2016, 4, (2), pp. 564575.
    35. 35)
      • 35. Cheng, M., Pan, C., Teng, J., et al: ‘An input current ripple-free flyback-type converter with passive pulsating ripple canceling circuit’, IEEE Trans. Ind. Appl., 2017, 53, (2), pp. 12101218.
    36. 36)
      • 36. Kim, S., Do, H.: ‘Soft-switching step-up converter with ripple-free output current’, IEEE Trans. Power Electron., 2016, 31, (8), pp. 56185624.
    37. 37)
      • 37. Ansari, S.A., Moghani, J.S.: ‘A novel high voltage gain noncoupled inductor SEPIC converter’, IEEE Trans. Ind. Electron., 2019, 66, (9), pp. 70997108.
    38. 38)
      • 38. Rosas-Caro, J., Mayo-Maldonado, J., Valdez-Resendiz, J., et al: ‘Designoriented analysis and modeling of a single-inductor continuous input-current buck–boost dc-dc converter’. 2011 Proc. World Congress on Engineering and Computer Science WCECS, San Francisco, CA, USA, 2011, pp. 16.
    39. 39)
      • 39. Williams, B.W.: ‘Generation and analysis of canonical switching cell dc-to-dc converters’, IEEE Trans. Ind. Electron., 2014, 61, (1), pp. 329346.
    40. 40)
      • 40. Vorperian, V.: ‘Simplified analysis of PWM converters using model of PWM switch. Continuous conduction mode’, IEEE Trans. Aerosp. Electron. Syst., 1990, 26, (3), pp. 490496.
    41. 41)
      • 41. Vorperian, V.: ‘Simplified analysis of PWM converters using model of PWM switch. II. Discontinuous conduction mode’, IEEE Trans. Aerosp. Electron. Syst., 1990, 26, (3), pp. 497505.
    42. 42)
      • 42. Slah, F., Mansour, A., Hajer, M., et al: ‘Analysis, modeling and implementation of an interleaved boost dc-dc converter for fuel cell used in electric vehicle’, Int. J. Hydrog. Energy, 2017, 42, (48), pp. 2885228864.
    43. 43)
      • 43. Garcia-Vite, P.M., Soriano-Rangel, A., Rosas-Caro, J.C., et al: ‘A dc-dc converter with quadratic gain and input current ripple cancelation at a selectable duty cycle’, Renew. Energy, 2017, 101, pp. 431436.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2018.5616
Loading

Related content

content/journals/10.1049/iet-pel.2018.5616
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address