Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free LC–CLC compensation topology for capacitive power transfer system to improve misalignment performance

To improve the coupler misalignment performance, this study proposes an LC–CLC compensation topology for high-power and long-distance capacitive power transfer system. The LC circuit in the transmitter and the CLC circuit in the receiver are adopted as the resonant tank for the capacitive coupler. The fundamental harmonics approximation method is employed to analyse the system working principle. Considering the misalignment of coupler, the characteristic of output power is provided against the variation of coupler capacitance. A 1 kW CPT system with 150 mm transfer distance is set up to validate the proposed compensation circuit under various misalignment conditions. The experiment results show that the system can transfer 1009 W output power with 90.56% DC–DC efficiency at 150 mm transfer distance when the coupler is well aligned. When the misalignment is 325 mm, the variation of the output power is only 10.6% in X-direction and 15.2% in Y-direction. The proposed system can achieve high anti-misalignment performance.

References

    1. 1)
      • 19. Ruikun, M., Bo, L., Yangqi, C., et al: ‘A double-sided CL compensation topology based component voltage stress optimization method for capacitive power transfer charging system’, IET Power Electron., 2018, 11, (7), pp. 11531160.
    2. 2)
      • 15. Hu, A.P., Chao, L., Hao, L.L.: ‘A novel contactless battery charging system for soccer playing robot’. Proc. 2008 15th Int. Conf. on Mechatronics and Machine Vision in Practice, Auckland, New Zealand, Dec 2008, pp. 646650.
    3. 3)
      • 11. Jegadeesan, R., Agarwal, K., Guo, Y., et al: ‘Wireless power delivery to flexible subcutaneous implants using capacitive coupling’, IEEE Trans. Microw. Theory, 2017, 65, (1), pp. 280292.
    4. 4)
      • 30. Luo, B., Mai, R., Chen, Y., et al: ‘A voltage stress optimization method of capacitive power transfer charging system’. Proc. Annual IEEE Applied Power Electronics Conf. and Exposition (APEC), Tampa, FL, USA, March 2017, pp. 14561461.
    5. 5)
      • 16. Lu, F., Zhang, H., Mi, C.: ‘A review on the recent development of capacitive wireless power transfer technology’, Energies, 2017, 10, (11), p. 1752.
    6. 6)
      • 2. Kim, J.H., Lee, B., Lee, J., et al: ‘Development of 1-MW inductive power transfer system for a high-speed train’, IEEE Trans. Ind. Electron., 2015, 62, (10), pp. 62426250.
    7. 7)
      • 25. Zhou, S., Mi, C.C.: ‘Multi-paralleled LCC reactive power compensation networks and their tuning method for electric vehicle dynamic wireless charging’, IEEE Trans. Ind. Electron., 2016, 63, (10), pp. 65466556.
    8. 8)
      • 22. Zhang, H., Lu, F., Hofmann, H., et al: ‘A four-plate compact capacitive coupler design and LCL-compensated topology for capacitive power transfer in electric vehicle charging application’, IEEE Trans. Power Electron., 2016, 31, (12), pp. 85418551.
    9. 9)
      • 12. Ludois, D.C., Reed, J.K., Hanson, K.: ‘Capacitive power transfer for rotor field current in synchronous machines’, IEEE Trans. Power Electron., 2012, 27, (11SI), pp. 46384645.
    10. 10)
      • 29. Huang, L., Hu, A.P.: ‘Defining the mutual coupling of capacitive power transfer for wireless power transfer’, Electron. Lett., 2015, 51, (22), pp. 18061807.
    11. 11)
      • 1. Dai, J., Ludois, D.C.: ‘A survey of wireless power transfer and a critical comparison of inductive and capacitive coupling for small gap applications’, IEEE Trans. Power Electron., 2015, 30, (11), pp. 60176029.
    12. 12)
      • 8. Lu, F., Zhang, H., Hofmann, H., et al: ‘A double-sided LCLC-compensated capacitive power transfer system for electric vehicle charging’, IEEE Trans. Power Electron., 2015, 30, (11), pp. 60116014.
    13. 13)
      • 14. Shmilovitz, D., Ozeri, S., Ehsani, M.M.: ‘A resonant LED driver with capacitive power transfer’. Proc. Annual IEEE Applied Power Electronics Conf. and Exposition (APEC), Fort Worth, TX, USA, March 2014, pp. 13841387.
    14. 14)
      • 24. Budhia, M., Boys, J.T., Covic, G.A., et al: ‘Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems’, IEEE Trans. Ind. Electron., 2013, 60, (1), pp. 318328.
    15. 15)
      • 18. Li, S., Liu, Z., Zhao, H., et al: ‘Wireless power transfer by electric field resonance and its application in dynamic charging’, IEEE Trans. Ind. Electron., 2016, 63, (10), pp. 66026612.
    16. 16)
      • 7. Liu, C., Hu, A.P., Covic, G.A., et al: ‘Comparative study of CCPT systems with two different inductor tuning positions’, IEEE Trans. Power Electron., 2012, 27, (1), pp. 294306.
    17. 17)
      • 17. Choi, J., Tsukiyama, D., Tsuruda, Y., et al: ‘High-frequency high-power resonant inverter with eGaN FET for wireless power transfer’, IEEE Trans. Power Electron., 2018, 33, (3), pp. 18901896.
    18. 18)
      • 13. Ludois, D.C., Erickson, M.J., Reed, J.K.: ‘Aerodynamic fluid bearings for translational and rotating capacitors in noncontact capacitive power transfer systems’, IEEE Trans. Ind. Appl., 2014, 50, (2), pp. 10251033.
    19. 19)
      • 26. Bosshard, R., Kolar, J.W.: ‘Multi-objective optimization of 50 kW/85 kHz IPT system for public transport’, IEEE J. Emerg. Sel. Topics Power Electron, 2016, 4, (4SI), pp. 13701382.
    20. 20)
      • 21. Sinha, S., Kumar, A., Pervaiz, S., et al: ‘Design of efficient matching networks for capacitive wireless power transfer systems’. Proc. IEEE Workshop on Control and Modeling for Power Electronics, Trondheim, Norway, June 2016, pp. 17.
    21. 21)
      • 27. Liu, C., Hu, A.P., Wang, B., et al: ‘A capacitively coupled contactless matrix charging platform with soft switched transformer control’, IEEE Trans. Ind. Electron., 2013, 60, (1), pp. 249260.
    22. 22)
      • 31. Lu, F., Zhang, H., Hofmann, H., et al: ‘A high efficiency 3.3 kW loosely-coupled wireless power transfer system without magnetic material’. Proc. Annual IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada, Sep 2015, pp. 22822286.
    23. 23)
      • 5. Theodoridis, M.P.: ‘Effective capacitive power transfer’, IEEE Trans. Power Electron., 2012, 27, (12), pp. 49064913.
    24. 24)
      • 4. Su, Y., Xie, S., Hu, A.P., et al: ‘Capacitive power transfer system with a mixed-resonant topology for constant-current multiple-pickup applications’, IEEE Trans. Power Electron., 2017, 32, (11), pp. 87788786.
    25. 25)
      • 20. Choi, S.: ‘Design guidelines for a capacitive wireless power transfer system with input/output matching transformers’, J. Electr. Eng. Technol., 2016, 11, (6), pp. 16561663.
    26. 26)
      • 9. Lu, F., Zhang, H., Mi, C.: ‘A two-plate capacitive wireless power transfer system for electric vehicle charging applications’, IEEE Trans. Power Electron., 2018, 33, (2), pp. 964969.
    27. 27)
      • 6. Lu, F., Zhang, H., Hofmann, H., et al: ‘A double-sided lc-compensation circuit for loosely coupled capacitive power transfer’, IEEE Trans. Power Electron., 2018, 33, (2), pp. 16331643.
    28. 28)
      • 23. Huang, L., Hu, A.P., Swain, A.K., et al: ‘Compensation for wireless power transfer based on electric field’, IEEE Trans. Power Electron., 2016, 31, (11), pp. 75567563.
    29. 29)
      • 3. Zhang, H., Lu, F., Hofmann, H., et al: ‘Six-plate capacitive coupler to reduce electric field emission in large air-gap capacitive power transfer’, IEEE Trans. Power Electron., 2018, 33, (1), pp. 665675.
    30. 30)
      • 28. Dai, J., Ludois, D.C.: ‘Biologically inspired coupling pixilation for position independence in capacitive power transfer surfaces’. Proc. Annual IEEE Applied Power Electronics Conf. and Exposition (APEC), Charlotte, NC, USA, March 2015, pp. 32763282.
    31. 31)
      • 10. Dai, J., Ludois, D.C.: ‘Capacitive power transfer through a conformal bumper for electric vehicle charging’, IEEE Emerg J. Sel. Topics Power Electron., 2016, 4, (3SI), pp. 10151025.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2018.5606
Loading

Related content

content/journals/10.1049/iet-pel.2018.5606
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address