access icon free Enhanced direct torque control and predictive torque control strategies of an open-End winding induction motor drive to eliminate common-mode voltage and weighting factors

Direct torque control (DTC) and predictive torque control (PTC) strategies emerged as powerful tools for speed control of variable frequency drives (VFD). The limitations in classical DTC and PTC are: higher ripple in torque, flux, variable switching frequency, and higher common-mode voltage (CMV). High dv/dt and CMV results in shaft voltages, bearing currents, malfunction of power electronic devices and electromagnetic interference (EMI). To eliminate the CMVs and also to reduce the switching frequency, voltage vector selection-based DTC and PTC strategies are introduced to an open-end winding induction motor (OEWIM) drive. Another limitation of classical PTC is cumbersome tuning of weighting factors. To address this limitation, modified cost function-based PTC strategy has been developed to eliminate weighting factors. OEWIM drive operates with dual inverter configuration and the two inverters are operated with equal DC-link voltages; therefore, it delivers three-level output voltage. This article introduces various DTC and PTC strategies to an OEWIM drive to reduce torque, flux ripples, switching frequency, elimination of CMV, and weighting factors. The effectiveness of proposed DTC and PTC strategies is tested by dspace-1104 real-time interface controller and comparing the obtained results with classical DTC and PTC.

Inspec keywords: shafts; invertors; electromagnetic interference; machine windings; machine control; variable speed drives; induction motor drives; PWM invertors; torque control; induction motors

Other keywords: open-end winding induction motor drive; predictive torque control strategies; shaft voltages; variable frequency drives; real-time interface controller; OEWIM drive; classical PTC; weighting factors; variable switching frequency; equal DC-link voltages; modified cost function-based PTC strategy; speed control; common-mode voltage; three-level output voltage; enhanced direct torque control

Subjects: Mechanical variables control; Electromagnetic compatibility and interference; Asynchronous machines; Mechanical components; Power convertors and power supplies to apparatus; Control of electric power systems; Drives

References

    1. 1)
      • 19. Habibullah, M., Lu, D.D.C., Xiao, D., et al: ‘A simplified finite-state predictive direct torque control for induction motor drive’, IEEE Trans. Ind. Electron., 2016, 63, (6), pp. 39643975.
    2. 2)
      • 6. Abu-Rub, H., Iqbal, A., Guzinski, J.: ‘High performance control of AC drives with matlab/simulink models’ (John Wiley & Sons, Inc., New York, 2012).
    3. 3)
      • 17. Miranda, H., Cortes, P., Yuz, J.I., et al: ‘Predictive torque control of induction machines based on state-space models’, IEEE Trans. Ind. Electron., 2009, 56, (6), pp. 19161924.
    4. 4)
      • 23. Saribulut, L., Teke, A., Tümay, M.: ‘Vector-based reference location estimating for space vector modulation technique’, Electr. Power Syst. Res., 2012, 86, pp. 5160.
    5. 5)
      • 28. Behera, R.K., Das, S.P., Ojo, O.: ‘Analysis and experimental investigation of CM voltage mitigation of a high performance induction motor drive’. 2012 IEEE Int. Conf. on Power Electronics, Drives and Energy Systems (PEDES), Bengaluru, 2012, pp. 16.
    6. 6)
      • 21. Karamanakos, P., Stolze, P., Kennel, R.M., et al: ‘Variable switching point predictive torque control of induction machines’, IEEE J. Emerg. Sel. Top. Power Electron., 2014, 2, (2), pp. 285295.
    7. 7)
      • 26. Kalaiselvi, J., Srinivas, S.: ‘Bearing currents and shaft voltage reduction in dual-inverter-fed open-end winding induction motor with reduced CMV PWM methods’, IEEE Trans. Ind. Electron., 2015, 62, (1), pp. 144152.
    8. 8)
      • 38. Kalantari, N., Lopes, L.A.C.: ‘Reduction of dead-time effect on the common mode voltage of an open-end winding machine’. 2016 IEEE 25th Int. Symp. on Industrial Electronics (ISIE), Santa Clara, CA, 2016, pp. 836841.
    9. 9)
      • 3. Correa, P., Pacas, M., Rodriguez, J.: ‘Predictive torque control for inverter-fed induction machines’, IEEE Trans. Ind. Electron., 2007, 54, (2), pp. 10731079.
    10. 10)
      • 25. Renge, M.M., Suryawanshi, H.M.: ‘Three-dimensional space-vector modulation to reduce common-mode voltage for multilevel inverter’, IEEE Trans. Ind. Electron., 2010, 57, (7), pp. 23242331.
    11. 11)
      • 13. Dehghani kiadehi, A., El Khamlichi Drissi, K., Pasquier, C.: ‘Angular modulation of dual-inverter fed open-end motor for electrical vehicle applications’, IEEE Trans. Power Electron., 2016, 31, (4), pp. 29802990.
    12. 12)
      • 14. Lu, S, Corzine, K.: ‘Multilevel multi-phase propulsion drives’. IEEE Electric Ship Technologies Symp., 2005., Philadelphia, PA, 2005, pp. 363370.
    13. 13)
      • 12. Jain, S., Ramulu, C., Padmanadhan, S., et al: ‘Dual MPPT algorithm for dual PV source fed open-end winding induction motor drive for pumping application’, Eng. Sci. Technol., Int. J., 2016, 19, (4), pp. 17711780.
    14. 14)
      • 36. Praveen Kumar, K.V., Ravi Eswar, K.M., Vinay Kumar, T.: ‘Hardware implementation of predictive torque controlled open end winding induction motor drive with self-tuning algorithm’, Cogent Eng., 2017, 4, (1), pp. 117.
    15. 15)
      • 39. Vas, P.: ‘Sensorless vector and direct torque control’ (Oxford University Press, New York, 1998).
    16. 16)
      • 33. Praveen Kumar, K.V., Vinay Kumar, T.: ‘An enhanced three-level voltage switching state scheme for direct torque controlled open end winding induction motor’, J. Inst. Eng. India- Series B, 2018, 99, (3), pp. 235243, doi: 10.1007/s40031-017-0311-7 (in early access).
    17. 17)
      • 4. Zhong, L., Rahman, M.F., Hu, W.Y., et al: ‘Analysis of direct torque control in permanent magnet synchronous motor drives’, IEEE Trans. Power Electron., 1997, 12, (3), pp. 528536.
    18. 18)
      • 24. Cirrincione, M., Pucci, M., Vitale, G., et al: ‘A new direct torque control strategy for the minimization of common-mode emissions’, IEEE Trans. Ind. Appl., 2006, 42, (2), pp. 504517.
    19. 19)
      • 34. Praveen Kumar, K.V., Vinay Kumar, T.: ‘Predictive torque control of open-end winding induction motor drive fed with multi-level inversion using two two-level inverters’, IET-Electr. Power Appl., 2018, 12, (1), pp. 5462.
    20. 20)
      • 22. Zhang, Y., Yang, H.: ‘Model predictive torque control of induction motor drives with optimal duty cycle control’, IEEE Trans. Power Electron., 2014, 29, (12), pp. 65936603.
    21. 21)
      • 7. Ogasawara, S., Ayano, H., Akagi, H.: ‘Measurement and reduction of EMI radiated by a PWM inverter-fed AC motor drive system’, IEEE Trans. Ind. Appl., 1997, 33, (4), pp. 10191026.
    22. 22)
      • 32. Praveen Kumar, K.V., Vinay Kumar, T.: ‘An effective four-level voltage switching state algorithm for direct torque controlled open end winding induction motor drive by using two two-level inverters’, Electr. Power Compon. Syst., 2018, 45, (19), pp. 21752187.
    23. 23)
      • 27. Kumar, P.R., Rajeevan, P.P., Mathew, K., et al: ‘A three-level common-mode voltage eliminated inverter with single DC supply using flying capacitor inverter and cascaded H-bridge’, IEEE Trans. Power Electron., 2014, 29, (3), pp. 14021409.
    24. 24)
      • 5. Buja, G.S., Kazmierkowski, M.P.: ‘Direct torque control of PWM inverter-fed AC motors - a survey’, IEEE Trans. Ind. Electron., 2004, 51, (4), pp. 744757.
    25. 25)
      • 15. Lakhimsetty, S., Surulivel, N., Somasekhar, V.T.: ‘Improvised SVPWM strategies for an enhanced performance for a four-level open-end winding induction motor drive’, IEEE Trans. Ind. Electron., 2017, 64, (4), pp. 27502759.
    26. 26)
      • 35. Meesala, R.E.K., Kunisetti, V.P.K., Thippiripati, V.K.: ‘Enhanced predictive torque control for open end winding induction motor drive without weighting factor assignment’, IEEE Trans. Power Electron., 2019, 34, (1), pp. 503513, doi: 10.1109/TPEL.2018.2812760 (in early access).
    27. 27)
      • 20. Zhang, Y., Yang, H.: ‘Two-vector-based model predictive torque control without weighting factors for induction motor drives’, IEEE Trans. Power Electron., 2016, 31, (2), pp. 13811390.
    28. 28)
      • 30. Kumar, A., Fernandes, B.G., Chatterjee, K.: ‘DTC of open-end winding induction motor drive using space vector modulation with reduced switching frequency’. 2004 IEEE 35th Annual Power Electronics Specialists Conf. (IEEE Cat. No.04CH37551), 2004, Vol. 2, pp. 12141219.
    29. 29)
      • 2. Depenbrock, M.: ‘Direct self-control (DSC) of inverter-fed induction machine’, IEEE Trans. Power Electron., 1988, 3, (4), pp. 420429.
    30. 30)
      • 9. Cacciato, M., Consoli, A., Scarcella, G., et al: ‘Reduction of common-mode currents in PWM inverter motor drives’, IEEE Trans. Ind. Appl., 1999, 35, (2), pp. 469476.
    31. 31)
      • 29. Kumar, K.V.P., Kumar, T.V.: ‘Experimental implementation of direct torque control of open end winding induction motor’. 2016 IEEE Region 10 Conf. (TENCON), Singapore, 2016, pp. 33183323.
    32. 32)
      • 16. Kunisetti, V.P.K., Kodumur Meesala, R.E., Thippiripati, V.K.: ‘Improvised predictive torque control strategy for an open end winding induction motor drive fed with four-level inversion using normalised weighted sum model’, IET Power Electron., 2018, 11, (5), pp. 808816.
    33. 33)
      • 11. Akagi, H., Hasegawa, H., Doumoto, T.: ‘Design and performance of a passive EMI filter for use with a voltage-source PWM inverter having sinusoidal output voltage and zero common-mode voltage’, IEEE Trans. Power Electron., 2004, 19, (4), pp. 10691076.
    34. 34)
      • 18. Vinay Kumar, T., Rao, S.S.: ‘Direct torque controlled induction motor drive based on cascaded three two-level inverters’, Int. J. Model. Simul., 2014, 34, (2), pp. 7082.
    35. 35)
      • 31. Vinod, B.R., Baiju, M.R., Shiny, G.: ‘Five level inverter fed space vector based direct torque control of open-end winding induction motor drive’, IEEE Trans. Energy Convers., 2018, 33, (3), pp. 13921401, doi: 10.1109/TEC.2018.2824350.
    36. 36)
      • 1. Takahashi, I., Noguchi, T.: ‘A new quick-response and high-efficiency control strategy of an induction motor’, IEEE Trans. Ind. Appl., 1986, IA-22, (5), pp. 820827.
    37. 37)
      • 10. Zhang, H., Von Jouanne, A., Dai, S., et al: ‘Multilevel inverter modulation schemes to eliminate common-mode voltages’, IEEE Trans. Ind. Appl., 2000, 36, (6), pp. 16451653.
    38. 38)
      • 37. Zhu, B., Rajashekara, K., Kubo, H.: ‘Comparison between current-based and flux/torque-based model predictive control methods for open-end winding induction motor drives’, IET Electr. Power Appl., 2017, 11, (8), pp. 13971406.
    39. 39)
      • 8. ABB Drives.: ‘Bearing currents in modern AC drive systems’, Technical Guide No. 5. ABB, 2011.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2018.5599
Loading

Related content

content/journals/10.1049/iet-pel.2018.5599
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading