access icon free Highly reliable joining for high-temperature power modules: Ni–Sn DSLID with an Al sheet

Highly reliable operation at high temperatures is required for next-generation power modules in electric vehicles. We propose a joining concept involving nickel–tin (Ni–Sn) double solid–liquid interdiffusion with an aluminium (Al) sheet (Ni–Sn DSLID/Al), which enables the production of modules with high thermal reliability. The use of Ni–Sn DSLID/Al joint as bonding layers for a large thermal coefficient mismatch [silicon (Si) chip: 3.9 × 10−6 K−1, copper electrode plate: 16.5 × 10−6 K−1] effectively decreased the compressive stress to 250 MPa in the Si chip, compared with that of a conventional Ni–Sn SLID joint (500 MPa) after joining. Moreover, the stress was relaxed when heating to 200°C during thermal cycling (from −40 to 200°C), due to the plastic and creep deformations of the inserted Al sheet. In addition, Ni–Sn DSLID/Al joint suppressed crack propagation during thermal cycling and exhibited higher thermal durability than Ni–Sn SLID and Sn–10% antimony solder joints up to 500 cycles, due to the higher resistances of the plastic and creep deformations of the inserted Al sheet. The present concept demonstrates great potential for use in fabricating joints for next-generation power modules.

Inspec keywords: aluminium alloys; silicon; copper; cracks; thermal expansion; nickel alloys; antimony alloys; soldering; tin alloys; creep; chemical interdiffusion; internal stresses; reliability; bonding processes

Other keywords: NiSnAl; next-generation power modules; creep deformations; aluminium sheet; Ni–Sn DSLID/Al joint; high-temperature power modules; conventional Ni–Sn SLID joint; thermal cycling; inserted Al sheet; thermal reliability; temperature -40.0 degC to 200.0 degC; plastic deformations; solder joints; thermal durability; Cu; Si; bonding layers; electric vehicles; SnSb; pressure 500.0 MPa; thermal coefficient mismatch; copper electrode plate; Si chip; compressive stress; nickel–tin double solid–liquid interdiffusion; crack propagation

Subjects: Metals and alloys (engineering materials science); Product packaging; General fabrication techniques; Reliability

References

    1. 1)
      • 11. Quintero, P., Oberc, T., McCluskey, P.: ‘Reliability assessment of high temperature lead-free device attach technologies’. Proc. Electronic Components and Technology Conf., Lake Buena Vista, Florida, USA, 2008, pp. 21312138.
    2. 2)
      • 3. Millán, J., Godignon, P.X., Pérez-Tomás, A., et al: ‘A survey of wide bandgap power semiconductor devices’, IEEE Trans. Power Electron., 2014, 29, (5), pp. 21552163.
    3. 3)
      • 4. Bartolomeo, L., Abbatelli, L., Macauda, M., et al: ‘Wide band gap materials: revolution in automotive power electronics’. Proc. Electric Vehicle Technology & Automobile Power Electronics Japan Conf. (EVTeC and APE), Japan, 2016.
    4. 4)
      • 6. Gohara, H., Arai, H., Morozumi, A.: ‘Packaging technology of IPMs for hybrid vehicles’, Fuji Electr. Rev., 2013, 59, (4), pp. 235240.
    5. 5)
      • 5. Yamada, Y., Takaku, Y., Yagi, Y., et al: ‘Pb-free high temperature solder joint for power semiconductor devices’, Trans. Jpn. Inst. Electron. Packag., 2009, 2, (1), pp. 7984.
    6. 6)
      • 13. Ishizaki, T., Miura, D., Kuno, A., et al: ‘Power cycle reliability of Cu nanoparticle joints with mismatched coefficients of thermal expansion’, Microelectron. Reliab., 2016, 64, pp. 287293.
    7. 7)
      • 7. O'neal, B.C., Mcgee, B., Mcpherson, B., et al: ‘Advanced materials for high temperature, high performance, wide bandgap power modules’, J. Electron. Mater., 2016, 45, (1), pp. 245254.
    8. 8)
      • 1. Kitazawa, O., Kikuchi, T., Nakashima, M., et al: ‘Development of power control unit for compact-class vehicle’, SAE Int. J. Altern. Power, 2016, 5, (2), pp. 278285.
    9. 9)
      • 19. Morozumi, A., Hokazono, H., Nishimura, Y., et al: ‘Influence of antimony on reliability of solder joints using Sn–Sb binary alloy for power semiconductor module’, J. Jpn. Inst. Electron. Packag., 2015, 8, (1), pp. 817.
    10. 10)
      • 18. Yagi, Y., Andoh, M., Nagae, H.: ‘Thermal stress measurement during die bonding of silicon chips with high temperature diffused-type strain gauges’. Proc. Joint ASME/JSME Conf. Electronic Packaging, Milpitas, California, USA, 1992, pp. 925929.
    11. 11)
      • 10. Lee, S.B., Hyun, K.S., Yoon, W.J.: ‘Cu–Sn and Ni–Sn transient liquid phase bonding for die-attach technology applications in high-temperature power electronics packaging’, J. Mater. Sci., 2017, 28, pp. 78277833.
    12. 12)
      • 8. Gao, Y., Zhang, H., Li, W., et al: ‘Die bonding performance using bimodal Cu particle paste under different sintering atmospheres’, J. Electron. Mater., 2017, 46, (7), pp. 45754581.
    13. 13)
      • 21. Yin, L., Wentlent, L., Yang, L., et al: ‘Recrystallization and precipitate coarsening in Pb-free solder joints during thermomechanical fatigue’, J. Electron. Mater., 2012, 41, (2), pp. 241252.
    14. 14)
      • 2. Hamada, K., Nagao, M., Ajioka, M., et al: ‘SiC – emerging power device technology for next-generation electrically powered environmentally friendly vehicles’, IEEE Trans. Electron Devices, 2015, 62, (2), pp. 278284.
    15. 15)
      • 17. Smith, C. S.: ‘Piezoresistance effect in germanium and silicon’, Phys. Rev., 1954, 1, (94), pp. 4249.
    16. 16)
      • 12. Moeini, A.S., Greve, H., McCluskey, P.: ‘Reliability and failure analysis of Cu–Sn transient liquid phase sintered (TLPS) joints under power cycling loads’. Proc. 2015 IEEE Third Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Blacksburg, Virginia, USA, 2015.
    17. 17)
      • 16. Robert, H.: ‘Properties of crystalline silicon’ (INSPEC, London, UK, 1999), pp. 421428.
    18. 18)
      • 14. Ito, H., Kuwahara, M., Ohta, R., et al: ‘Behaviour of stress generated in semiconductor chips with high-temperature joints: influence of mechanical properties of joint materials’, J. Appl. Phys., 2018, 123, p. 145109.
    19. 19)
      • 20. Totten, G.E., MacKenzie, S.D.: ‘Handbook of aluminum’, in Totten, G.E., MacKenzie, S.D. (Eds.): ‘Physical metallurgy and processes’, vol. 1 (Marcel Dekker Inc., Boca Raton, 2003), p. 264.
    20. 20)
      • 15. Nishibe, Y., Yagi, Y., Nishiyama, K., et al: ‘Thermal stress simulation for HV inverter module’. Proc. Power Conversion Conf., Nagoya, Aichi, Japan, 2007, pp. 558562.
    21. 21)
      • 9. Zhu, X.Z., Li, C.C., Liao, L.L., et al: ‘Au–Sn bonding material for the assembly of power integrated circuit module’, J. Alloys Compd., 2016, 671, pp. 340345.
    22. 22)
      • 22. Chen, H., Li, J., Li, M.: ‘Dependence of recrystallization on grain morphology of Sn-based solder interconnects under thermomechanical stress’, J. Alloys Compd., 2012, 540, pp. 3235.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2018.5590
Loading

Related content

content/journals/10.1049/iet-pel.2018.5590
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading