Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Fixed switching frequency predictive control of an asymmetric source dual inverter system with a floating bridge for multilevel operation

Fixed switching frequency predictive control of an asymmetric source dual inverter system with a floating bridge for multilevel operation

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study proposes a modified modulated model predictive control (MMPC) scheme to control an open-end winding induction motor drive using an asymmetric source dual inverter with one floating bridge. The control algorithm uses a modulation algorithm within the cost function optimisation scheme to avoid variable switching frequency. The voltage of the floating capacitor is regulated utilising predefined redundant switching sequences as well as the voltage vector location is identified to improve calculation time. The proposed MMPC scheme enhances the output performance with comparison to the model predictive control scheme. Experimental results are presented to verify theory and simulation results.

References

    1. 1)
      • 4. Chowdhury, S., Wheeler, P.W., Gerada, C., et al: ‘Model predictive control for a dual active bridge inverter with a floating bridge’, IEEE Trans. Ind. Electron., 2016, 63, pp. 55585568.
    2. 2)
      • 16. Chowdhury, S., Wheeler, P., Gerada, C., et al: ‘A dual two-level inverter with a single source for open end winding induction motor drive application’. Euro. Conf. on Power Electronics and Applications (EPE'15 ECCE-Europe), Geneva, Switzerland, 2015, pp. 19.
    3. 3)
      • 7. Vargas, R., Rodriguez, J., Ammann, U., et al: ‘Predictive current control of an induction machine fed by a matrix converter with reactive power control’, IEEE Trans. Ind. Electron., 2008, 55, pp. 43624371.
    4. 4)
      • 14. Baiju, M.R., Mohapatra, K.K., Kanchan, R.S., et al: ‘A dual two-level inverter scheme with common mode voltage elimination for an induction motor drive’, IEEE Trans. Power Electron., 2004, 19, pp. 794805.
    5. 5)
      • 19. Chowdhury, S., Wheeler, P., Patel, C., et al: ‘A multilevel converter with a floating bridge for open-ended winding motor drive applications’, IEEE Trans. Ind. Electron., 2016, 63, pp. 53665375.
    6. 6)
      • 13. Gregor, R., Barrero, F., Toral, S.L., et al: ‘Predictive-space vector PWM current control method for asymmetrical dual three-phase induction motor drives’, IET Electr. Power Appl., 2010, 4, pp. 2634.
    7. 7)
      • 20. Huang, Z., Yang, T., Giangrande, P., et al: ‘An active modulation scheme to boost voltage utilisation of the dual converter with a floating bridge’, IEEE Trans. Ind. Electron., doi: 10.1109/TIE.2018.2873539.
    8. 8)
      • 6. Almaktoof, A.M., Raji, A.K., Kahn, M.T.E.: ‘Finite-set model predictive control and DC-link capacitor voltages balancing for three-level NPC inverters’. Int. Power Electronics and Motion Control Conf. and Exposition (PEMC), Antalya, Turkey, 2014, pp. 224229.
    9. 9)
      • 11. Vazquez, S., Montero, C., Bordons, C., et al: ‘Design and experimental validation of a model predictive control strategy for a VSI with long prediction horizon’. IEEE Annual Conf. on Industrial Electronics Society IECON, Vienna, Austra, 2013, pp. 57885793.
    10. 10)
      • 17. Jose, R., Patricio, C. (Ed.): ‘Effect of model parameter errors’, ‘Predictive control of power converters and electrical drives’ (Wiley-IEEE Press, Hoboken, NJ, USA, 2012), pp. 191202.
    11. 11)
      • 12. Tarisciotti, L., Zanchetta, P., Watson, A., et al: ‘Modulated model predictive control for a three-phase active rectifier’, IEEE Trans. Ind. Appl., 2015, 51, pp. 16101620.
    12. 12)
      • 8. Muller, S., Ammann, U., Rees, S.: ‘New time-discrete modulation scheme for matrix converters’, IEEE Trans. Ind. Electron., 2005, 52, pp. 16071615.
    13. 13)
      • 9. Geyer, T., Oikonomou, N., Papafotiou, G., et al: ‘Model predictive pulse pattern control’, IEEE Trans. Ind. Appl., 2012, 48, pp. 663676.
    14. 14)
      • 1. Rodriguez, J., Pontt, J., Silva, C.A., et al: ‘Predictive current control of a voltage source inverter’, IEEE Trans. Ind. Electron., 2007, 54, pp. 495503.
    15. 15)
      • 5. Vazquez, S., Aguilera, R., Acuna, P., et al: ‘Model predictive control for single-phase NPC converters based on optimal switching sequences’, IEEE Trans. Ind. Electron., 2016, PP, pp. 11.
    16. 16)
      • 2. Kouro, S., Cortes, P., Vargas, R., et al: ‘Model predictive control – a simple and powerful method to control power converters’, IEEE Trans. Ind. Electron., 2009, 56, pp. 18261838.
    17. 17)
      • 3. Zanchetta, P., Cortes, P., Perez, M., et al: ‘Finite states model predictive control for shunt active filters’. IEEE Annual Conf. on Industrial Electronics Society IECON, Melbourne, Australia, 2011, pp. 581586.
    18. 18)
      • 18. Young, H.A., Perez, M.A., Rodriguez, J.: ‘Analysis of finite-control-set model predictive current control with model parameter mismatch in a three-phase inverter’, IEEE Trans. Ind. Electron., 2016, 63, pp. 31003107.
    19. 19)
      • 15. Reddy, B.V., Somasekhar, V.T.: ‘A dual inverter fed four-level open-end winding induction motor drive with a nested rectifier-inverter’, IEEE Trans. Ind. Inf., 2013, 9, pp. 938946.
    20. 20)
      • 10. Abad, G., Rodriguez, M., Poza, J.: ‘Two-level VSC based predictive direct torque control of the doubly fed induction machine with reduced torque and flux ripples at low constant switching frequency’, IEEE Trans. Ind. Electron., 2008, 23, pp. 10501061.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2018.5395
Loading

Related content

content/journals/10.1049/iet-pel.2018.5395
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address