access icon free Master–slave structure-based capacitor voltage measuring technique for hybrid modular multilevel converters

The measurement of the capacitor voltage of each sub-module (SM) is a crucial part of achieving robust control of modular multilevel converters (MMCs). This study proposes a master–slave structure-based capacitor voltage measuring technique (MS-MT) for hybrid MMCs, in which the SM capacitor voltages are calculated using nine processes at the corresponding sampling instants according to the changing rule of the arm AC-side voltage and SM operation states. In MS-MT, the master sensor is used to measure the overall arm voltage while the slave sensor, which measures the full bridge, is used additionally to improve accuracy. Furthermore, MS-MT performs well even under pre-charging and DC short-circuit fault conditions, for the reason that a single SM short-circuit fault can be detected during above two conditions by comparing the voltages measured by the two sensors. Compared with the direct measuring technique, which has low measurement errors, and the overall measuring technique, which requires less hardware cost, MS-MT inherits both advantages. Finally, extensive simulation and experimental results validate the effectiveness of the proposed MS-MT.

Inspec keywords: power capacitors; voltage measurement; voltage-source convertors; measurement errors

Other keywords: single SM short-circuit fault; direct measuring technique; arm voltage; SM capacitor voltages; DC short-circuit fault conditions; slave sensor; SM operation states; arm AC-side voltage; hybrid MMC; low measurement errors; MS-MT; master sensor; hybrid modular multilevel converters; overall measuring technique; master–slave structure-based capacitor voltage measuring technique

Subjects: Measurement theory; Other power apparatus and electric machines; Voltage measurement; Power convertors and power supplies to apparatus

References

    1. 1)
      • 16. Hagiwara, M., Maeda, R., Akagi, H.: ‘Control and analysis of the modular multilevel cascade converter based on double-star chopper cells (MMCC-DSCC)’, IEEE Trans. Power Electron., 2011, 26, (6), pp. 16491658.
    2. 2)
      • 10. Zhao, B., Song, Q., Li, J.G.: ‘Comparative analysis of multilevel-high-frequency-link and multilevel-DC-link DC–DC transformers based on MMC and dual-active bridge for MVDC application’, IEEE Trans. Power Electron., 2018, 33, (3), pp. 20352049.
    3. 3)
      • 35. Farivar, G., Agelidis, V.G., Hredzak, B.: ‘A generalized capacitors voltage estimation scheme for multilevel converters’. Proc. EPE 2014, Lappeenranta, Finland, August 2014, pp. 15.
    4. 4)
      • 33. Picas, R., Zaragoza, J., Pou, J., et al: ‘New measuring technique for reducing the number of voltage sensors in modular multilevel converters’, IEEE Trans. Power Electron., 2016, 31, (1), pp. 177187.
    5. 5)
      • 8. Saeedifard, M., Iravani, R.: ‘Dynamic performance of a modular multilevel back-to-back HVDC system’, IEEE Trans. Power Deliv., 2010, 25, (4), pp. 29032912.
    6. 6)
      • 24. De Leon Morales, J., Escalante, M.F., Mata-Jimenez, M.T., et al: ‘Observer for DC voltages in a cascaded H-bridge multilevel STATCOM’, IET Electr. Power Appl., 2007, 33, (1), pp. 879889.
    7. 7)
      • 29. D'Arco, S., Suul, J.A.: ‘Estimation of sub-module capacitor voltages in modular multilevel converters’. Proc. EPE 2013, Lille, France, September 2013, pp. 110.
    8. 8)
      • 19. Zhou, Y.B., Jiang, D.Z., Hu, P.F., et al: ‘A prototype of modular multilevel converters’, IEEE Trans. Power Electron., 2014, 29, (7), pp. 32673278.
    9. 9)
      • 36. Rong, F., Gong, X.C., Li, X., et al: ‘A new voltage measure method for MMC. Based on sample delay compensation’, IEEE Trans. Power Electron., 2018, 33, (7), pp. 57125723.
    10. 10)
      • 14. Yang, J., Fletcher, J.E., O'Reilly, J.: ‘Short-circuit and ground fault analyses and location in VSC-based DC network cables’, IEEE Trans. Ind. Electron., 2012, 59, (10), pp. 38273837.
    11. 11)
      • 20. Deng, F.J., Chen, Z.: ‘Voltage-balancing method for modular multilevel converters switched at grid frequency’, IEEE Trans. Ind. Electron., 2015, 62, (5), pp. 28352847.
    12. 12)
      • 30. Haghnazari, S., Zolghadri, M. Z.: ‘A novel voltage measurement technique for modular multilevel converter capacitors’. Proc. IECON 2015, Yokohama, Japan, November 2015, pp. 238243.
    13. 13)
      • 22. Sun, Y.C., Teixeira, C.A., Holmes, D.G., et al: ‘Low-order circulating current suppression of PWM-based modular multilevel converters using DC-link voltage compensation’, IEEE Trans. Power Electron., 2018, 33, (1), pp. 210225.
    14. 14)
      • 5. Harnefors, L., Anronopoulos, A., Norrga, S., et al: ‘Dynamic analysis of modular multilevel converters’, IEEE Trans. Ind. Electron., 2013, 60, (7), pp. 25262537.
    15. 15)
      • 38. Zeng, R., Xu, L., Yao, L.Z., et al: ‘Precharging and DC fault ride-through of hybrid MMC-based HVDC systems’, IEEE Trans. Power Deliv., 2015, 30, (3), pp. 12981306.
    16. 16)
      • 32. Abushafa, O., Dahidah, M. S.A., Gadoue, S.M., et al: ‘Capacitor voltage estimation scheme with capacitor voltage estimation scheme with multilevel converters’, IEEE J. Emerg. Sel. Top. Power Electron., DOI: 10.1109/JESTPE.2018.2797245, early access.
    17. 17)
      • 28. daxxxSilva, G.S., Vieira, R.P., Rech, C.: ‘Modified sliding-mode observer of capacitor voltages in modular multilevel converter’. Proc. Brazilian Power Electronics Conf./Southern Power Electronics Conf. (COBEP/SPEC 2015), Fortaleza, Brazil, November 2015, pp. 16.
    18. 18)
      • 7. Qin, J.C., Saeedifard, M.: ‘Predictive control of a modular multilevel converter for a back-to-back HVDC system’, IEEE Trans. Power Deliv., 2012, 27, (3), pp. 15381547.
    19. 19)
      • 11. Javaid, U., Christe, A., Freijedo, F.D.: ‘Interactions between bandwidth limited CPLs and MMC based MVDC supply’. Proc. ECCE 2017, Cincinnati, USA, October 2017, pp. 26792685.
    20. 20)
      • 25. Nademi, H., Das, A., Norum, L.E.: ‘Modular multilevel converter with an adaptive observer of capacitor voltages’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 235248.
    21. 21)
      • 27. Najmi, V., Nademi, H., Burgos, R.: ‘An adaptive backstepping observer for modular multilevel converter’. Proc. Energy Conversion Congress and Exposition (ECCE 2014), Pittsburgh, USA, September 2014, pp. 21152120.
    22. 22)
      • 9. Bergna, G., Berne, E., Egrot, P., et al: ‘An energy-based controller for HVDC modular multilevel converter in decoupled double synchronous reference frame for voltage oscillation reduction’, IEEE Trans. Ind. Electron., 2013, 60, (6), pp. 23602371.
    23. 23)
      • 21. Tu, Q.R., Xu, Z., Xu, L.: ‘Reduced switching-frequency modulation and circulating current suppression for modular multilevel converters’, IEEE Trans. Power Deliv., 2011, 26, (3), pp. 20092017.
    24. 24)
      • 6. Guan, M.Y., Xu, Z.: ‘Modeling and control of a modular multilevel converter-based HVDC system under unbalanced grid conditions’, IEEE Trans. Power Electron., 2012, 27, (12), pp. 48584867.
    25. 25)
      • 15. Wang, Y.Q., Marquardt, R.: ‘Future HVDC-grids employing modular multilevel converters and hybrid DC-breakers’. Proc. EPE 2013, Lille, France, September 2013, pp. 18.
    26. 26)
      • 2. Kouro, S., Malinowski, M., Gopakumar, K., et al: ‘Recent advances and industrial applications of multilevel converters’, IEEE Trans. Ind. Electron., 2010, 57, (8), pp. 25532580.
    27. 27)
      • 34. Farivar, G., Hredzak, B., Agelidis, V.G.: ‘A DC-side sensorless cascaded H-bridge multilevel converter-based photovoltaic system’, IEEE Trans. Ind. Electron., 2016, 63, (7), pp. 42334241.
    28. 28)
      • 23. Friedrich, K.: ‘Modern HVDC PLUS application of VSC in modular multilevel converter topology’. Proc. Int. Symp. on Industrial Electronics (ISIE 2010), Bari, Italy, July 2010, pp. 38073810.
    29. 29)
      • 31. Abushafa, O., Dahidah, M. S.A., Gadoue, S.M., et al: ‘Submodule voltage estimation scheme in modular multilevel converters with reduced voltage sensors based on Kalman filter approach’, IEEE Trans. Ind. Electron., 2018, 65, (9), pp. 70257035.
    30. 30)
      • 17. Mei, J., Shen, K., Xiao, B.L., et al: ‘A new selective loop bias mapping phase disposition PWM with dynamic voltage balance capability for modular multilevel converter’, IEEE Trans. Ind. Electron., 2014, 61, (2), pp. 798807.
    31. 31)
      • 12. Winkelnkemper, M., Korn, A., Steimer, P.: ‘A modular multilevel converter for transformer less rail interties’. Proc. Int. Symp. on Industrial Electronics (ISIE 2010), Bari, Italy, July 2010, pp. 562567.
    32. 32)
      • 18. Shen, K., Zhao, D., Mei, J., et al: ‘Elimination of harmonics in a modular multilevel converter using particle swarm optimization-based staircase modulation strategy’, IEEE Trans. Ind. Electron., 2014, 61, (10), pp. 53115322.
    33. 33)
      • 37. Li, D.Y., Sun, Y.C., Zhao, J.F., et al: ‘A modified voltage measurement technique for the PSC-PWM modulated modular multilevel converters using module grouping’. Proc. IECON 2017, Beijing, China, October 2017, pp. 589594.
    34. 34)
      • 4. Malinowski, M., Gopakumar, K., Rodriguez, J., et al: ‘A survey on cascaded multilevel inverters’, IEEE Trans. Ind. Electron., 2010, 57, (7), pp. 21972206.
    35. 35)
      • 26. Bibalan, Z.M., Pahlavani, M.R.A., Gazafroodi, S.M.M.: ‘Adaptive back stepping observer design for direct current link capacitor voltages of multi-port high power converter’. Proc. Power System Conf. (PSC 2015), Tehran, Iran, November 2015, pp. 351357.
    36. 36)
      • 3. Wan, Y., Liu, S., Jiang, J.: ‘Generalised analytical methods and current-energy control design for modular multilevel cascade converter’, IET Power Electron., 2013, 6, (3), pp. 495504.
    37. 37)
      • 13. Tang, L.X., Ooi, B. T.: ‘Locating and isolating DC faults in multiterminal DC systems’, IEEE Trans. Power Deliv., 2007, 22, (3), pp. 18771884.
    38. 38)
      • 1. Marquardt, R.: ‘Current rectification circuit for voltage source inverters with separate energy stores replaces phase blocks with energy storing capacitors’. German Patent, No. DE10103031A1, July 2010.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2018.5302
Loading

Related content

content/journals/10.1049/iet-pel.2018.5302
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading