Your browser does not support JavaScript!

access icon free Hybrid generators-based AC microgrid performance assessment in island mode

Achieving an accurate steady-state averaged active power sharing between parallel inverters in islanded AC microgrids could be realised by a traditional droop control. For identical inverters having the same droop gains, it is assumed that the transient average power responses will be similar, and no circulating current will flow between the units. However, different line impedances could influence the instantaneous power significantly and thus circulating power flows among the inverters particularly during sudden disturbances such as load changes. This power, if absorbed by an inverter, will lead the DC link voltage to rise abruptly and trip the inverter, thus, degrading the performance of the whole microgrid. The problem becomes worse when hybrid generators are serving as a unidirectional power source. This study assesses the performance of hybrid generators within an islanded microgrid against the mismatch in line impedances. Two schemes to stabilise the microgrid are proposed. In addition, a participation factor analysis is developed to select the most effective controller scheme to bound the DC link voltage and minimise the circulating power. Simulation and experimental results are presented to verify the analysis and the capability of the proposed controller.


    1. 1)
      • 29. Zhang, C., Coelho, E.A.A., Guerrero, J.M., et al: ‘Modular online uninterruptible power system plug N play control and stability analysis’, IEEE Trans. Ind. Electron., 2016, 63, (6), pp. 37653776.
    2. 2)
      • 24. Issa, W., Abusara, M., Sharkh, S., et al: ‘A small signal model of an inverter-based microgrid including DC link voltages’. 17th European Conf. on Power Electronics and Applications, EPE 2015, Geneva, Switzerland, 2015.
    3. 3)
      • 20. Al Badwawi, R., Issa, W., Mallick, T., et al: ‘Power management of Ac islanded microgrids using fuzzy logic’. 8th IET Int. Conf. on Power Electronics, Machines and Drives (PEMD), Glasgow, UK, 2016.
    4. 4)
      • 11. Meliopoulos, A.P.S., Cokkinides, G.J.: ‘Small Signal Stability Analysis of the Integrated Power System-MicroGrid Model’, In Proc. IEEE Power Eng. Soc. General Meeting, 2004, pp. 595601.
    5. 5)
      • 1. IEEE standard for interconnecting distributed resources with electric power systemsIEEE Standard 1547–2003, IEEE, 2003, USA.
    6. 6)
      • 18. Abusara, M., Guerrero, J.M., Sharkh, S.: ‘Line interactive UPS for microgrids’, IEEE Trans. Ind. Electron., 2014, 61, (3), pp. 12921300.
    7. 7)
      • 25. Pogaku, N., Prodanovic, M., Green, T.C.: ‘Modeling, analysis and testing of autonomous operation of an inverter-based microgrid’, IEEE Trans. Power Electron., 2007, 22, (2), pp. 613625.
    8. 8)
      • 2. Issa, W., Sharkh, S., Mallick, T., et al: ‘Improved reactive power sharing for parallel-operated inverters in islanded microgrids’, J. Power Electron., 2016, 16, (3), pp. 11521162.
    9. 9)
      • 22. Mane, S., Kadam, P., Lahoti, G., et al: ‘Optimal load balancing strategy for hybrid energy management system in DC microgrid with PV, fuel cell and battery storage’. 2016 IEEE Int. Conf. on Renewable Energy Research and Applications (ICRERA), Birmingham, UK, 2016.
    10. 10)
      • 19. Mahmood, H., Michaelson, D., Jin, J.: ‘Control strategy for a standalone PV/battery hybrid system’. 38th Annual Conf. on IEEE Industrial Electronics Society -IECON 2012, Guwahati, India, 2012.
    11. 11)
      • 13. Escobar, G., Mattavelli, P., Stankovic, A.M., et al: ‘An adaptive control for UPS to compensate unbalance and harmonic distortion using a combined capacitor/load current sensing’, IEEE Trans. Ind. Electron., 2007, 54, (2), pp. 839847.
    12. 12)
      • 5. Issa, W.R., Khateb, A.H.E., Abusara, M.A., et al: ‘Control strategy for uninterrupted microgrid mode transfer during unintentional islanding scenarios’, IEEE Trans. Ind. Electron., 2017, 65, (6), pp. 48314839.
    13. 13)
      • 28. Guerrero, J. M., GarciadeVicuna, L., Matas Alcala, J., et al: ‘Output impedance design of parallel-connected UPS inverters with wireless load-sharing control’, IEEE Trans. Ind. Electron., 2005, 52, (4), pp. 11261135.
    14. 14)
      • 16. Moghadasi, A., Sargolzaei, A., Khalilnejad, A., et al: ‘Model predictive power control approach for three-phase single-stage grid-tied PV module-integrated converter’. 2016 IEEE Industry Applications Society Annual Meeting, Portland, OR, USA, 2016.
    15. 15)
      • 8. Guerrero, J.M., De Vicuna, L.G., Matas, J., et al: ‘A wireless controller to enhance dynamic performance of parallel inverters in distributed generation systems’, IEEE Trans. Power Electron., 2004, 19, (5), pp. 12051213.
    16. 16)
      • 4. Zhong, Q.C., Zeng, Y.: ‘Universal droop control of inverters with different types of output impedance’, IEEE. Access., 2016, 4, pp. 702712.
    17. 17)
      • 6. Avelar, H.J., Parreira, W.A., Vieira, J.B., et al: ‘A state equation model of a single-phase grid-connected inverter using a droop control scheme with extra phase shift control action’, IEEE Trans. Ind. Electron., 2012, 59, (3), pp. 15271537.
    18. 18)
      • 23. Ziaeinejad, S., Sangsefidi, Y., Mehrizi-Sani, A.: ‘Fuel cell-based auxiliary power unit: Ems, sizing, and current estimator-based controller’, IEEE Trans. Veh. Technol., 2016, 65, (6), pp. 48264835.
    19. 19)
      • 17. Vasquez, J. C., Jaume Miret, J.M.G., Castilla, M., et al: ‘Hierarchical control of intelligent microgrids’, IEEE Ind. Electron. Mag., 2010, 4, (4), pp. 2329.
    20. 20)
      • 21. Kolli, A., Gaillard, A., De Bernardinis, A., et al: ‘A review on DC/DC converter architectures for power fuel cell applications’, Energy Convers. Manage., 2015, 105, pp. 716730.
    21. 21)
      • 12. Vasquez, J.C., Guerrero, J.M., Luna, A., et al: ‘Adaptive droop control applied to voltage-source inverters operating in grid-connected and islanded modes’, IEEE Trans. Ind. Electron., 2009, 56, (10), pp. 40884096.
    22. 22)
      • 10. Chen, Y.M., Liu, Y.C., Hung, S.C., et al: ‘Multi-Input inverter for grid-connected hybrid PV/wind power system’, IEEE Trans. Power Electron., 2007, 22, (3), pp. 10701077.
    23. 23)
      • 27. Abusara, M.A., Sharkh, S.M., Guerrero, J.M.: ‘Improved droop control strategy for grid-connected inverters’, Sust. Energy Grids Networks, 2015, 1, pp. 1019.
    24. 24)
      • 15. Tan, K.T., So, P.L., Chu, Y.C., et al: ‘Coordinated control and energy management of distributed generation inverters in a microgrid’, IEEE Trans. Power Deliv., 2013, 28, (2), pp. 704713.
    25. 25)
      • 7. Issa, W., Abusara, M., Sharkh, S.: ‘Control of transient power during unintentional islanding of microgrids’, IEEE Trans. Power Electron., 2014, 30, (8), pp. 45734584.
    26. 26)
      • 26. Rasheduzzaman, M., Mueller, J., Kimball, J.: ‘An accurate small-signal model of inverter-dominated islanded microgrids using Dq reference frame’, IEEE J. Emerging Sel. Topics Power Electron., 2014, 2, (4), pp. 10701080.
    27. 27)
      • 3. Coelho, E.A., Wu, D., Guerrero, J.M., et al: ‘Small-signal analysis of the microgrid secondary control considering a communication time delay’, IEEE Trans. Ind. Electron., 2016, 63, (10), pp. 62576269.
    28. 28)
      • 14. Zhang, C., Guerrero, J.M., Vasquez, J.C., et al: ‘Control architecture for parallel-connected inverters in uninterruptible power systems’, IEEE Trans. Power Electron., 2016, 31, (7), pp. 51765188.
    29. 29)
      • 9. Majumder, R., Chaudhuri, B., Ghosh, A., et al: ‘Improvement of stability and load sharing in an autonomous microgrid using supplementary droop control loop’, IEEE Trans. Power Syst., 2010, 25, (2), pp. 796808.

Related content

This is a required field
Please enter a valid email address