Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Reliability model of MMC-based flexible interconnection switch considering the effect of loading state uncertainty

Flexible interconnection switch (FIS) is a power electronic device applied to electrical distribution system to realise the flexible control of power flow. Due to the fact that the reliability of FIS tends to be influenced by its operating conditions and dynamic characteristics during its actual operation, it is of significance to characterise the effects of loadings on reliability of FIS. Therefore, an improved reliability model of FIS is proposed, considering the state uncertainty of current and voltage loadings. First, the structural reliability model of modular multilevel converter (MMC) is established. Next, in view of the uncertainty of source and load in distribution network, Monte Carlo simulation is used to deal with the random current loadings, thus the equivalent reliability model of insulated gate bipolar transistor module is built. Then, considering the arm's voltage loading sharing mechanism, a state-dependent arm reliability model is built. Finally, an eight-state reliability model for the entire FIS is developed, and Markov-based analytical method is used to solve it. With the standard test system as well as the actual project in Hangzhou are taken as the testing systems, the reliability indices of FIS are calculated and compared with the field data. The numerical results validate the validity of the proposed model.

References

    1. 1)
      • 12. Hao, J., Jianzhong, X.U., Ying, X.U., et al: ‘Reliability analysis of MMC considering the submodule correlations’, Proc. Chin. Soc. Electr. Eng., 2017, 37, (13), pp. 38353842.
    2. 2)
      • 8. Guo, J., Wang, X., Bie, Z., et al: ‘Reliability modeling and evaluation of VSC-HVDC transmission systems’. Pes General Meeting | Conf. & Exposition IEEE, Washington, D.C., USA, 2014, pp. 15.
    3. 3)
      • 6. Song, Y., Wang, B.: ‘Survey on reliability of power electronic systems’, IEEE Trans. Power Electron., 2013, 28, (1), pp. 591604.
    4. 4)
      • 7. Ming, D., Jingjing, W., Qian, S.: ‘Reliability modeling and redundancy analysis of converter valves for VSC-HVDC power transmission system based on k-out-of-n:G model’, Power Syst. Technol., 2008, 32, (21), pp. 3236.
    5. 5)
      • 5. Castellan, S., Menis, R., Tessarolo, A., et al: ‘A review of power electronics equipment for all-electric ship MVDC power systems’, Int. J. Electr. Power Energy Syst., 2018, 96, pp. 306323.
    6. 6)
      • 11. Wang, C., Zhao, C., Xu, J.: ‘A method for calculating sub-module redundancy configurations in modular multilevel converters’, Autom. Electr. Power Syst., 2013, 37, (16), pp. 103107.
    7. 7)
      • 3. Bloemink, J.M., Green, T.C.: ‘Benefits of distribution-level power electronics for supporting distributed generation growth’. IEEE Trans. Power Deliv., 2013, 28, (2), pp. 911919.
    8. 8)
      • 22. Zhao, Z., Li, K., Jiang, Y., et al: ‘Overview on reliability of modular multilevel cascade converters’, Chin. J. Electr. Eng., 2017, 1, (1), pp. 3749.
    9. 9)
      • 15. Guo, H., Wen, J.L., Tang, G.F., et al: ‘Reliability analysis and optimal design of main circuit within HVDC thyristor valve’, Proc. Chin. Soc. Electr. Eng., 2009, 29, pp. 3943.
    10. 10)
      • 10. Moghadasi, S.M., Kazemi, A., Fotuhi-Firuzabad, M., et al: ‘Composite system reliability assessment incorporating an interline power-flow controller’, IEEE Trans. Power Deliv., 2008, 23, (2), pp. 11911199.
    11. 11)
      • 19. Griffith, W.S.: ‘Optimal reliability modeling: principles and applications’, Technometrics., 2004, 46, (1), pp. 112112.
    12. 12)
      • 13. Kim, C., Lee, S.: ‘Redundancy determination of HVDC MMC modules’, Electron. (Basel), 2015, 4, (3), pp. 526537.
    13. 13)
      • 21. Hu, P., Jiang, D., Zhou, Y., et al: ‘Energy-balancing control strategy for modular multilevel converters under submodule fault conditions’, IEEE Trans. Power Electron., 2014, 29, (9), pp. 50215030.
    14. 14)
      • 14. Wang, X., Guo, J., Pang, H., et al: ‘Structural reliability analysis of modular multi-level converters’, Proc. Chin. Soc. Electr. Eng., 2016, 36, (7), pp. 19081914.
    15. 15)
      • 18. Cheng, L., Chengyong, Z., Baoshun, Z., et al: ‘Sequential logic and submodule fault detection of MMC control system’, Electr. Power Autom. Equip., 2015, 35, (5), pp. 8388.
    16. 16)
      • 25. Li, W.: ‘Risk assessment of power systems: models, methods, and applications, 2nd edition’ (John Wiley & Sons, Hoboken, NJ, USA, 2015).
    17. 17)
      • 16. Xiangning, H., Wei, S., Wuhua, L., et al: ‘Reliability enhancement of power electronics systems by big data science’, Proc. Chin. Soc. Electr. Eng., 2017, 37, (1), pp. 209220.
    18. 18)
      • 23. Kapur, K.C., Lambberson, L.R.: ‘Reliability in engineering design’ (John Wiley & Sons, Hoboken, NJ, USA, 1977).
    19. 19)
      • 9. Aminifar, F., Firuzabad, M.F., Billinton, R.: ‘Extended reliability model of a unified power flow controller’. IET Gener. Transm. Distrib., 2007, 1, (6), pp. 896903.
    20. 20)
      • 4. Bloemink, J.M., Green, T.C.: ‘Increasing distributed generation penetration using soft normally-open points’. Power and Energy Society General Meeting, Minneapolis, MN, USA, 2010, pp. 18.
    21. 21)
      • 1. Romero-Ramos, E., GóMez-ExpóSito, A., Marano-Marcolini, A., et al: ‘Assessing the loadability of active distribution networks in the presence of DC controllable links’, IET Gener. Trans. Distrib., 2011, 5, (11), pp. 11051113.
    22. 22)
      • 24. Recueil de données de fiabilité.: ‘RDF 2000: Reliability data handbook-A universal model for reliability prediction of electronics components, PCBs and equipment UTE-C80–810’, July. 2000.
    23. 23)
      • 17. Lu, Z., Liu, W.: ‘Reliability evaluation of STATCOM based on the k-out-of-n: G model’, Proc. Chin. Soc. Electr. Eng., 2007, 27, (13), pp. 1217.
    24. 24)
      • 20. Cao, W., Wu, J., Jenkins, N., et al: ‘Operating principle of soft open points for electrical distribution network operation’, Appl. Energy, 2016, 164, pp. 245257.
    25. 25)
      • 2. Long, C., Wu, J., Thomas, L., et al: ‘Optimal operation of soft open points in medium voltage electrical distribution networks with distributed generation’, Appl. Energy, 2016, 184, pp. 427437.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2018.5262
Loading

Related content

content/journals/10.1049/iet-pel.2018.5262
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address