Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Hybrid field oriented and direct torque control for sensorless BLDC motors used in aerial drones

In this study, a sensorless hybrid control scheme for brushless direct current (BLDC) motors for use in multirotor aerial vehicles is introduced. In such applications, the control scheme must satisfy high-performance demands for a wide range of rotor speeds and must be robust to motor parameter uncertainties and measurement noise. The proposed controller combines field-oriented control (FOC) and direct torque control (DTC) techniques to take benefit of the advantages offered by each of these techniques individually. Simulation results demonstrate the effectiveness of the proposed control scheme over a wide range of rotor speeds as well as good robustness against parameter uncertainties within for inductance and for resistance parameters. The proposed hybrid controller is robust also against noise in voltage and current measurements. In order to verify the results from simulation, the proposed hybrid controller is implemented in hardware using the TI C2000 Piccolo Launchpad and TI BOOSTXL-DRV8305EVM BoosterPack. Testing is done with a Bull Running motor typically used in aerial drones. Testing experiments demonstrate that the hybrid controller reduces the rotor speed ripple when compared to DTC while operating in steady-state mode and decreases the response time to desired speed changes when compared to FOC.

References

    1. 1)
      • 31. Renesas, Motor control by RL78/G14 micro controller sensorless 120 degrees conducting control of brushless DC motor, Application Note R01AN1389EJ0100, 2012.
    2. 2)
      • 41. Brandt, J.B., Deters, R.W., Ananda, G.K., et al: ‘UIUC propeller database’, 2008. Available at http://m-selig.ae.illinois.edu/props/propDB.html, accessed 12 November 2017.
    3. 3)
      • 18. Sensorless High-Speed FOC Reference Design for Drone ESC, Texas Instruments Designs, 2018. http://www.ti.com/tool/TIDA-00916.
    4. 4)
      • 8. Gabriel, R., Leonhard, W., Nordby, C.J.: ‘Field-oriented control of a standard AC motor using microprocessors’, IEEE Trans. Ind. Appl., 1980, IA-16, (2), pp. 168192.
    5. 5)
      • 19. Electronic speed controller reference design for drones, ST Reference Design, 2018. https://www.st.com/content/st_com/en/products/evaluation-tools/solution-evaluation-tools/motor-control-solution-eval-boards/steval-esc001v1.html.
    6. 6)
      • 1. Carey, K.D.: ‘Hybrid sensorless field oriented and direct torque control for variable speed brushless DC motors’. M.Sc. Thesis, Department of Electrical and Computer Engineering, Marquette University, December 2017.
    7. 7)
      • 20. Girija, P.K., Prince, A.: ‘Robustness evaluation of SMO in sensorless control of BLDC motor under DTC scheme’. Int. Conf. on Power Signals Control and Computations, Thrissur, India, 2014.
    8. 8)
      • 39. Merzoug, M.S., Naceri, F.: ‘Comparison of field-oriented control and direct torque control for permanent magnet synchronous motor (PMSM)’, World. Acad. Sci. Eng. Technol., 2008, 35, pp. 299304.
    9. 9)
      • 11. Zhou, X., Zhou, Y., Peng, C., et al: ‘Sensorless BLDC motor commutation point detection and phase deviation correction method’, IEEE Trans. Power Electron., Early Access, 2018, DOI: 10.1109/TPEL.2018.2867615.
    10. 10)
      • 2. Stirban, A., Boldea, I., Andreescu, G.D., et al: ‘Motion sensorless control of BLDC PM motor with ofline FEM info assisted state observer’. Int. Conf. on Optimization of Electrical and Electronic Equipment, Brasov, Romania, 2010, pp. 321328.
    11. 11)
      • 37. Noguchi, T., Takahashi, I.: ‘Quick torque response control of an induction motor based on a new concept’. IEEJ Tech. Meeting Rotating Mach., Tokyo, Japan, 1984, pp. 6170.
    12. 12)
      • 28. Peixoto, Z., Sa, F., Seixas, P., et al: ‘Speed control of permanent magnet motors using sliding mode observers for induced EMF position and speed estimation’. IEEE Conf. on Industrial Electronics, Orlando, FL, USA, 1995, pp. 10231028.
    13. 13)
      • 38. Takahashi, I., Noguchi, T.: ‘A new quick-response and high-efficiency control strategy of an induction motor’, IEEE Trans. Ind. Appl., 1986, 22, (5), pp. 820827.
    14. 14)
      • 5. Kim, T.S., Park, B.G., Lee, D.M., et al: ‘A new approach to sensorless control method for brushless DC motors’, Int. J. Control Autom. Syst., 2008, 6, (4), pp. 477487.
    15. 15)
      • 34. Yano, M., Abe, S., Ohno, E.: ‘History of power electronics for motor drives in Japan’. IEEE Conf. on the History of Electronics, Bletchley, United Kingdom, 2004.
    16. 16)
      • 17. UAV BLDC Motor Controller ESC with Field Oriented Control (FOC) and CAN, NXP Solutions, 2018. https://www.nxp.com/applications/solutions/internet-of-things/smart-things/unmanned-aerial-vehicles-uavs/motor-controls-and-actuators/uav-bldc-motor-controller-esc-with-field-oriented-control-foc-and-can:UAV-BLDC-MOTOR-CONTROLLER-FOC.
    17. 17)
      • 40. Markadeh, G.R.A., Mousavi, S.I., Abazari, S., et al: ‘Position sensorless direct torque control of BLDC motor’, Optim. Electr. Electron. Equip., 2008, DOI: 10.1109/OPTIM.2008.4602393.
    18. 18)
      • 24. Deenadayalan, A., Ilango, G.S.: ‘Position sensorless sliding mode observer with sigmoid function for brushless DC motor’. Int. Conf. on Advances in Power Conservation and Energy Technologies, Mylavaram, Andhra Pradesh, India, 2012.
    19. 19)
      • 15. Giernacki, W.: ‘Near to optimal design of PIλDμ fractional-order speed controller (FOPID) for multirotor motor-rotor simplified model’. Int. Conf. on Unmanned Aircraft Systems (ICUAS), Arlington, VA, USA, 2016, pp. 320326.
    20. 20)
      • 30. Prokop, L., Chalupa, L.: ‘3-Phase BLDC Motor Control with sensorless back emf zero crossing detection using 56F80x’, Freescale Semiconductor Application Note, 2005.
    21. 21)
      • 25. Hao, L., Toliyat, H.: ‘BLDC motor full-speed operation using hybrid sliding mode observer’. IEEE Applied Power Electronics Conf. and Exposition, Miami Beach, FL, USA, 2003, pp. 286293.
    22. 22)
      • 14. Orsag, M., Korpela, C., Bogdan, S., et al: ‘Dexterous aerial robots-mobile manipulation using unmanned aerial systems’, IEEE Trans. Robot., 2017, 33, (6), pp. 14531466.
    23. 23)
      • 33. Pillay, P., Krishnan, R.: ‘Modeling, simulation, and analysis of permanent-magnet motor drives, part II: the brushless DC motor drive’, IEEE Trans. Ind. Appl., 1989, 25, (2), pp. 275279.
    24. 24)
      • 36. Microsemi, Park, Inverse Park and Clarke, Inverse Clarke Transformations MSS Software Implementation, Application Note.
    25. 25)
      • 12. Li, T., Zhou, J.: ‘High-stability position-sensorless control method for brushless DC motors at low speed’, IEEE Trans. Power Electron., Early Access, 2018, DOI: 10.1109/TPEL.2018.2863735.
    26. 26)
      • 23. Fakham, H., Djema, M., Busawon, K.: ‘Design and practical implementation of a back-emf sliding mode observer for brushless DC motor’, IET Power Appl., 2008, 2, (6), pp. 353361.
    27. 27)
      • 35. Dubey, G.K.: ‘Fundamentals of electrical drives’ (CRC Press, Boca Raton, FL, USA, 2002).
    28. 28)
      • 4. Kim, T.H., Ehsani, M.: ‘Sensorless control of the BLDC motors from near-zero to high speeds’, IEEE Trans. Power Electron., 2004, 19, (6), pp. 16351645.
    29. 29)
      • 21. Deenadayalan, A., Ilango, G.S.: ‘Modified sliding mode observer for position and speed estimations in brushless DC motor’. IEEE India Conf., Hyderabad, India, 2011.
    30. 30)
      • 27. Feyzi, M.R., Shafiei, M., Kouhshahi, M.B., et al: ‘Position sensorless direct torque control of brushless dc motor drives based on sliding mode observer using NSGA-II algorithm optimization’. Power Electronics, Drive Systems and Technologies Conf., Tehran, Iran, 2011, pp. 151156.
    31. 31)
      • 10. Gamazo-Real, J.C., Vazquez-Sanchez, E., Gomez-Gil, J.: ‘Position and speed control of brushless DC motors using sensorless techniques and application trends’, Sensors, 2010, 10, pp. 69016947.
    32. 32)
      • 22. Zhang, H., Tu, Y., Wang, T.: ‘Sensor-less control for brushless DC motors based on hybrid sliding mode observer’. Int. Conf. on Intelligent Computation Technology and Automation, Changsha, China, 2014, pp. 636640.
    33. 33)
      • 16. Franchi, A., Mallet, A.: ‘Adaptive closed-loop speed control of BLDC motors with applications to multi-rotor aerial vehicles’. IEEE Int. Conf. on Robotics & Automation, Singapore, Singapore, 2017.
    34. 34)
      • 3. Baratiei, C.L., Pinheiro, H.: ‘An I-f starting method for smooth and fast transition to sensorless control of BLDC motors’. Brazilian Power Electronics Conf., Gramado, Brazil, 2013, pp. 836843.
    35. 35)
      • 6. Jang, G.H., Park, J.H., Chang, J.H.: ‘Position detection and start-up algorithm of a rotor in a sensorless BLDC motor utilizing inductance variation’, Electr. Power Appl. Proce., 2002, 149, (2), p. 137.
    36. 36)
      • 13. Bouabdallah, S.: ‘Design and control of quadrotors with application to autonomous flying’. PhD. Dissertation, Ecole Polytechnique Federale de Lausanne (EPFL), 2006.
    37. 37)
      • 26. Yan, W., Lin, H., Wang, M., et al: ‘Variable structure sliding mode based unknown input observer for speed identification of brushless DC motors’. IEEE Int. Conf. on Robotics and Biomimetrics, Guilin, China, 2009, pp. 21882193.
    38. 38)
      • 29. Chang, T., Wang, W., Wong, Y., et al: ‘Sensorless permanent-magnet synchronous motor drive using a reduced-order rotor flux observer’, IET Electr. Power Appl., 2008, 2, (2), pp. 8898.
    39. 39)
      • 32. Tiersten, M.S.: ‘Moments not to forget – the conditions for equating torque and rate of change of angular momentum around the instantaneous center’, Am. J. Phys., 1991, 59, (8), pp. 733738.
    40. 40)
      • 7. Kim, C.G., Lee, J.H., Kim, H.W., et al: ‘Study on maximum torque generation for sensorless controlled brushless DC motor with trapezoidal back EMF’, Electr. Power Appl. Proc., 2005, 152, (2), p. 277.
    41. 41)
      • 9. Tiitinen, P., Pohjalainen, P., Lalu, J.: ‘The next generation of motor control method: direct torque control (DTC)’, EPE J., 1995, 5, (1), pp. 1418.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2018.5231
Loading

Related content

content/journals/10.1049/iet-pel.2018.5231
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address