access icon free Pulse width modulation technique with harmonic injection in the modulating wave and discontinuous frequency modulation for the carrier wave to reduce vibrations in asynchronous machines

A new carrier-based pulse-width modulation (PWM) technique to control power inverters is presented in this study. To generate the output waveform, this technique compares a harmonic-injection modulating wave and a frequency-modulated triangular carrier wave. The instantaneous frequency for the carrier wave is adjusted according to a periodic function synchronised with the fundamental term of the modulating wave. The main motivation for using this technique compared to a classic PWM sinusoidal technique revolves around the reduction of total harmonic distortion, the reduction of the distortion factor and the shift of temporal harmonics to higher frequencies for any modulation frequency order. Experimental results show that it is possible to optimise the time harmonics generated to minimise vibrations produced by an induction motor when it is fed with a DC/AC converter controlled by the proposed control strategy. This is made possible by using a control parameter that modifies the instantaneous frequency of the carrier wave without modifying the number of pulses per period of the modulating wave, i.e. the mean value of the carrier wave frequency. The proposed technique is applied to an open loop-controlled inverter that operates an induction motor, helping to reduce the vibration levels produced.

Inspec keywords: PWM invertors; harmonic distortion; frequency modulation; vibrations; DC-AC power convertors; PWM power convertors; asynchronous machines; pulse width modulation; invertors

Other keywords: instantaneous frequency; modulation frequency order; pulse width modulation technique; temporal harmonics; total harmonic distortion; harmonic-injection modulating wave; carrier wave frequency; time harmonics; higher frequencies; discontinuous frequency modulation; carrier-based pulse-width modulation technique; frequency-modulated triangular carrier wave; harmonic injection; classic PWM sinusoidal technique

Subjects: Power electronics, supply and supervisory circuits; Control of electric power systems; Power convertors and power supplies to apparatus; Asynchronous machines; DC-AC power convertors (invertors)

References

    1. 1)
      • 33. Rashid, M.H.: ‘Power Electronics: DC–AC converters’ (Pearson, UK, 2013, 4th edn.), pp. 1309.
    2. 2)
      • 31. Meco-Gutiérrez, M.J., Heredia-Larrubia, J.R., Pérez-Hidalgo, F., et al: ‘Pulse width modulation technique parameter selection with harmonic injection and frequency modulated triangular carrier’, IET Power Electron., 2013, 6, (5), pp. 954962.
    3. 3)
      • 25. Kim, K.-S., Jung, Y.-G., Lim, Y.-C.: ‘A new hybrid random PWM scheme’, IEEE Trans. Power Electron., 2009, 24, (1), pp. 192200.
    4. 4)
      • 2. Zhang, Z., Thomsen, O.C., Andersen, M.A.: ‘Discontinuous PWM modulation strategy with circuit-level decoupling concept of three-level neutral-point-clamped (NPC) inverter’, IEEE Trans. Ind. Electron., 2013, 60, (5), pp. 18971906.
    5. 5)
      • 10. Kouro, S., Malinowski, M., Gopakumar, K., et al: ‘Recent advances and industrial applications of multilevel converters’, IEEE Trans. Ind. Electron., 2010, 57, (8), pp. 25532580.
    6. 6)
      • 12. Dahidah, M.S.A., Konstantinou, G.S., Agelidis, V.G.: ‘Selective harmonic elimination pulse-width modulation seven-level cascaded H-bridge converter with optimized DC voltage levels’, IET Power Electron., 2012, 5, (6), pp. 852862.
    7. 7)
      • 5. Narayanan, G., Zhao, D., Krishnamurthy, H.K., et al: ‘Space vector based hybrid PWM techniques for reduced current ripple’, IEEE Trans. Ind. Electron., 2008, 55, (4), pp. 16141627.
    8. 8)
      • 15. Tan, C., Xiao, D., Fletcher, J.E., et al: ‘Carrier-based PWM methods with common-mode voltage reduction for five-phase coupled inductor inverter’, IEEE Trans. Ind. Electron., 2016, 63, (1), pp. 526537.
    9. 9)
      • 4. Binoj Kumar, A.C., Narayanan, G.: ‘Variable-switching frequency PWM technique for induction motor drive to spread acoustic noise spectrum with reduced current ripple’, IEEE Trans. Ind. Appl., 2016, 52, (5), pp. 39273937.
    10. 10)
      • 28. Guellal, A., Cherif, C., Larbes, C., et al: ‘FPGA based on-line artificial neural network selective harmonic elimination PWM technique’, Int. J. Electr. Power Energy Syst., 2015, 68, (6), pp. 3343.
    11. 11)
      • 21. Napoles, J., Leon, J.I., Portillo, R., et al: ‘Selective harmonics mitigation technique for high-power converters’, IEEE Trans. Ind. Electron., 2010, 57, (7), pp. 23152323.
    12. 12)
      • 26. Trzynadlowski, A.M., Borisov and, K., Qin, L.: ‘A novel random PWM technique with low computational overhead and constant sampling frequency for high-volume, low-cost applications’, IEEE Trans. Power Electron., 2005, 20, (1), pp. 116122.
    13. 13)
      • 34. Gieras, J.F., Wang, C., Cho Lai, J.: ‘Inverter-fed motor’ in ‘Noise of polyphase electric motors’ (CRC Press/Taylor & Francis, USA, 2006, 1st edn.), pp. 6576.
    14. 14)
      • 7. Holtz, J., Oikonomou, N.: ‘Optimal control of a dual three-level inverter system for medium-voltage drivers’, IEEE Trans. Ind. Appl., 2010, 46, (3), pp. 10341041.
    15. 15)
      • 9. Rodriguez, J., Franquelo, L.G., Kouro, S., et al: ‘Multilevel converters: an enabling technology for high-power applications’, Proc. IEEE, 2009, 97, (11), pp. 17861817.
    16. 16)
      • 17. Ertan, H.B., Simsir, N.B.: ‘Comparison of PWM and PFM induction drives regarding audible noise and vibration for household applications’, IEEE Trans. Ind. Appl., 2004, 40, (6), pp. 16211628.
    17. 17)
      • 27. Ruiz-Perez, J., Ruiz-Gonzalez, A., Perez-Hidalgo, F.: ‘A new RPWM technique with harmonics injection and frequency randomized modulation’. XIX Int. Conf. on Electrical Machines, Rome, Italy, 1–6 September 2010.
    18. 18)
      • 20. Tran, Q.-T., Truong, A.V., Le, P.M.: ‘Reduction of harmonics in grid-connected inverters using variable switching frequency’, Int. J. Electr. Power Energy Syst., 2016, 82, pp. 242251.
    19. 19)
      • 22. Pulikanti, S.R., Dahidah, M.S.A., Agelidis, V.G.: ‘Voltage balancing control of three-level active NPC converter using SHE-PWM’, IEEE Trans. Power Deliv., 2011, 26, (1), pp. 258267.
    20. 20)
      • 18. Vargas-Merino, F., Meco-Gutierrez, M.J., Heredia-Larrubia, J.R., et al: ‘Low switching PWM strategy using a carrier wave regulated by the slope of a trapezoidal modulator wave’, IEEE Trans. Ind. Electron., 2009, 56, (6), pp. 22702274.
    21. 21)
      • 32. Ruiz-Gonzalez, A., Meco-Gutierrez, M.J., Vargas-Merino, F., et al: ‘Shaping the HIPWM-FMTC strategy to reduce acoustic noise radiated by inverter-fed induction motors’. XIX Int. Conf. on Electrical Machines, Vilamoura, Portugal, 1–6 September 2010.
    22. 22)
      • 29. Ruiz-Gonzalez, A., Meco-Gutierrez, M., Perez-Hidalgo, F., et al: ‘Reducing acoustic noise radiated by inverter-fed motors controlled by a new PWM strategy’, IEEE Trans. Ind. Electron., 2010, 57, (1), pp. 228236.
    23. 23)
      • 30. Meco-Gutierrez, M.J., Perez-Hidalgo, F., Vargas-Merino, F., et al: ‘A new PWM technique frequency regulated carrier for induction motors supply’, IEEE Trans. Ind. Electron., 2006, 53, (5), pp. 17501754.
    24. 24)
      • 3. Grandi, G., Loncarski, J.: ‘Simplified implementation of optimized carrier-based PWM in three-level inverters’, IET Electron. Lett., 2014, 50, (8), pp. 631633.
    25. 25)
      • 16. Stemmler, H., Eilinger, T.: ‘Spectral analysis of the sinusoidal PWM with variable switching frequency for noise reduction in inverter-fed induction motors’. Power Electronics Specialist Conf., Taipei, Taiwan, June 1994, pp. 269277.
    26. 26)
      • 13. Bifaretti, S., Tarisciotti, L., Watson, A., et al: ‘Distributed commutations pulse-width modulation technique for high-power AC/DC multi-level converters’, IET Power Electron., 2012, 5, (6), pp. 909919.
    27. 27)
      • 6. Choudhury, A., Pillay, P., Williamson, S.S.: ‘A hybrid PWM-based DC-link voltage balancing algorithm for a three-level NPC DC/AC traction inverter drive’, IEEE J. Emerging Sel. Top. Power Electron., 2015, 3, (3), pp. 805816.
    28. 28)
      • 19. Vargas-Merino, F., Meco-Gutierrez, M.J., Heredia-Larrubia, J.R., et al: ‘Highly efficient PWM strategy over FPGA’, IET Electron. Lett., 2008, 44, (24), pp. 13961398.
    29. 29)
      • 11. Ramchand, R., Sivakumar, K., Das, A., et al: ‘Improved switching frequency variation control of hysteresis controlled voltage source inverter-fed IM drives using current error space vector’, IET Power Electron., 2010, 3, (2), pp. 219231.
    30. 30)
      • 8. Dahidah, M., Konstantinou, G., Angelidis, V.: ‘A review of multilevel selective harmonic elimination PWM: formulations, solving algorithms, implementation and applications’, IEEE Trans. Power Electron., 2015, 30, (8), pp. 40914106.
    31. 31)
      • 1. Leon, J.I., Kouro, S., Franquelo, L.G., et al: ‘The essential role and the continuous evolution of modulation techniques for voltage-source inverters in the past, present, and future power electronics’, IEEE Trans. Ind. Electron., 2016, 63, (5), pp. 26882701.
    32. 32)
      • 23. Konstantinou, G., Ciobotaru, M., Agelidis, V.G.: ‘Selective harmonics elimination pulse-width modulation of modular multilevel converters’, IET Power Electron., 2013, 6, (1), pp. 96107.
    33. 33)
      • 14. Palanivel, P., Dash, S.S.: ‘Analysis of THD and output voltage performance for cascaded multilevel inverter using carrier pulse width modulation techniques’, IET Power Electron., 2011, 4, (8), pp. 951958.
    34. 34)
      • 24. Trzynadlowski, A.M., Blaabjerg, F., Pedersen, J.K., et al: ‘Random pulse width modulation techniques for converter-fed drive systems – a review’, IEEE Trans. Ind. Appl., 1994, 30, (5), pp. 11661175.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2018.5178
Loading

Related content

content/journals/10.1049/iet-pel.2018.5178
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading