access icon free Improved active clamped ZVS buck converter with freewheeling current transfer circuit

An improved active clamped zero-voltage switching (ZVS) buck converter with freewheeling current transfer circuit is proposed in this study. Comparing with the traditional active clamped ZVS buck converter, the current of freewheeling diode, the clamping voltage and duty cycle loss are all halved. The reduced current and voltage stress will result in high reliability and efficiency. Moreover, the reduced duty cycle loss will result in a low input voltage. In the improved converter, a small inductor and an auxiliary diode are added to build the freewheeling current transfer circuit. The operating principle of the improved converter is described. The analysis and design considerations of the proposed converter are given. A 1.2 kW prototype converter is set up to validate the improved converter.

Inspec keywords: switching convertors; zero voltage switching; power semiconductor diodes; power inductors

Other keywords: inductor; freewheeling diode; freewheeling current transfer circuit; reduced voltage stress; clamping voltage; kW prototype converter; reduced current stress; improved active clamped ZVS buck converter; auxiliary diode; reduced duty cycle loss; power 1.2 kW; low input voltage; improved active clamped zero-voltage switching buck converter

Subjects: Junction and barrier diodes; Power semiconductor devices; Transformers and reactors; Power convertors and power supplies to apparatus

References

    1. 1)
      • 24. Duarte, C.M.C., Barbi, I.: ‘An improved family of ZVS-PWM active clampeding dc-to-dc converters’, IEEE Trans. Power Electron., 2002, 17, (1), pp. 17.
    2. 2)
      • 8. Wang, J., Liu, P., Hicks-Garner, J., et al: ‘Cycle-life model for graphite-LiFePO4 cells’, J. Power Sources, 2011, 196, (8), pp. 39423948.
    3. 3)
      • 25. Hyung-Jin Choe, C.-H.S.J.-J.Y., Chung, Y.-C., Kang, B.: ‘Passive snubber for reducing switching power losses of IGBT in dc-dc boost converter’, IEEE Trans. Power Electron., 2014, 29, (12), pp. 63326341.
    4. 4)
      • 9. Lin, B.R., Hsieh, F.Y.: ‘Soft-switching zeta–flyback converter with a buck–boost type of active clamp’, IEEE Trans. Ind. Electron., 2007, 54, (5), pp. 28132822.
    5. 5)
      • 18. Yao, G., He, X.: ‘Soft switching circuit for interleaved boost converters’, IEEE Trans. Power Electron., 2007, 22, (1), pp. 8086.
    6. 6)
      • 20. Nan, C., Ayyanar, R., Xi, Y.: ‘A 2.2-MHz active clamped buck converter for automotive applications’, IEEE Trans. Power Electron., 2018, 33, (1), pp. 460472.
    7. 7)
      • 19. Jodar, E., Villarejo, J., Jimenez, J.M.: ‘Multiphase ZVS active clamp boost converter: dc and dynamic current sharing’, IEEE Trans. Ind. Electron., 2013, 60, (11), pp. 49474959.
    8. 8)
      • 4. Yilmaz, M., Krein, P.: ‘Review of battery charger topologies, charging power levels, infrastructure for plug-in electric and hybrid vehicles’, IEEE Trans. Power Electron., 2013, 28, (5), pp. 21512169.
    9. 9)
      • 21. Rodrigues, J.P., Mussa, S.A., Heldwein, M.L., et al: ‘Three-level ZVS active clamping PWM for the dc–dc buck converter’, IEEE Trans. Power Electron., 2009, 24, (10), pp. 22492258.
    10. 10)
      • 27. Powder core loss calculation’, Available at https://www.mag-inc.com/, accessed September 2018.
    11. 11)
      • 5. Das, P., Pahlevaninezhad, M., Singh, A.K.: ‘A novel load adaptive ZVS auxiliary circuit for PWM three-level DC–DC converters’, IEEE Trans. Power Electron., 2015, 30, (4), pp. 21082126.
    12. 12)
      • 12. Qin, W., Yu, N., Wu, X., et al: ‘Active clamp ZVZCS resonant forward dc transformer (DCX) with load-adaptive on time control’, IEEE Trans. Power Electron., 2018, 33, (12), pp. 1049010500.
    13. 13)
      • 3. Rivera, S., Wu, B., Kouro, S., et al: ‘Electric vehicle charging station using a neutral point clamped converter with bipolar dc bus’, IEEE Trans. Ind. Electron., 2015, 62, (4), pp. 19992009.
    14. 14)
      • 16. Wu, T.F., Lai, Y.S., Hung, Y.M., et al: ‘Boost converter with coupled inductors and buck–boost type of active clamp’, IEEE Trans. Ind. Electron., 2008, 55, (1), pp. 154162.
    15. 15)
      • 17. Dwari, S., Parsa, L.: ‘An efficient high-step-up interleaved dc–dc converter with a common active clamp’, IEEE Trans. Power Electron., 2011, 26, (1), pp. 6678.
    16. 16)
      • 11. Lee, S., Park, J., Choi, S.: ‘A three-phase current-fed push–pull dc–dc converter with active clamp for fuel cell applications’, IEEE Trans. Power Electron., 2011, 26, (8), pp. 22662277.
    17. 17)
      • 10. Lin, B.R., Dong, J.Y.: ‘Analysis and implementation of an active clamping zero-voltage turn-on switching/zero-current turn-off switching converter’, IET Power Electron., 2010, 3, (3), pp. 429437.
    18. 18)
      • 22. Lakshminarasamma, N., Masihuzzaman, M., Ramanarayanan, V.: ‘Steady-state stability of current-mode active clamped ZVS dc–dc converters’, IEEE Trans. Power Electron., 2011, 26, (5), pp. 12951304.
    19. 19)
      • 15. He, L., Zheng, Z., Guo, D.: ‘High step-up dc–dc converter with active soft-switching and voltage-clamping for renewable energy systems’, IEEE Trans. Power Electron., 2018, 33, (11), pp. 94969505.
    20. 20)
      • 7. Zhang, J., Lai, J.S., Kim, R.Y., et al: ‘High-Power density design of a soft-switching high-power bidirectional dc–dc converter’, IEEE Trans. Power Electron., 2007, 22, (4), pp. 11451153.
    21. 21)
      • 28. Barg, S., Ammous, K., Mejbri, H., et al: ‘An improved empirical formulation for magnetic core losses estimation under nonsinusoidal induction’, IEEE Trans. Power Electron., 2017, 32, (3), pp. 21462154.
    22. 22)
      • 13. Li, W., He, X.: ‘An interleaved winding-coupled boost converter with passive lossless clamp circuits’, IEEE Trans. Power Electron., 2007, 22, (4), pp. 14991507.
    23. 23)
      • 26. IGBT power losses calculation using the data-sheet parameters, application note’, Available at https://www.infineon.com/, accessed September 2018.
    24. 24)
      • 14. Liu, H., Wang, L., Li, F., et al: ‘Bidirectional active clamp DC–DC converter with high conversion ratio’, Electron. Lett., 2017, 53, (22), pp. 14831485.
    25. 25)
      • 1. Tan, L., Wu, B., Yaramasu, V., et al: ‘Effective voltage balance control for bipolar-dc-bus-fed EV charging station with three-level dc–dc fast charger’, IEEE Trans. Ind. Electron., 2016, 63, (7), pp. 40314041.
    26. 26)
      • 2. Deng, J., Shi, J., Liu, Y., et al: ‘Application of a hybrid energy storage system in the fast charging station of electric vehicles’, IET Gener. Transm. Distrib., 2016, 10, (4), pp. 10921097.
    27. 27)
      • 6. Wang, J.M., Wu, S.T., Jane, G.C.: ‘A novel control scheme of synchronous buck converter for ZVS in light-load condition’, IEEE Trans. Power Electron., 2011, 26, (11), pp. 32653273.
    28. 28)
      • 23. Wu, X., Zhang, J., Ye, X., et al: ‘Analysis and derivations for a family ZVS converter based on a new active clamp ZVS cell’, IEEE Trans. Ind. Electron., 2008, 55, (2), pp. 773781.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2018.5146
Loading

Related content

content/journals/10.1049/iet-pel.2018.5146
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading