http://iet.metastore.ingenta.com
1887

Modular control with carrier auto-interleaving and capacitor-voltage balancing for MMCs

Modular control with carrier auto-interleaving and capacitor-voltage balancing for MMCs

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, a new control method dedicated to modular multilevel converters (MMCs) is proposed. The approach is based on local communication between the individual controls of each submodule (SM). The local values of the capacitor voltages and the carrier-phase angles are shared between immediate neighbours achieving balancing of their capacitor voltages, and an automatic interleaving of the pulse-width modulation (PWM) signals. Using an inter-cell communication strategy, the number of required data exchanges with a centralised controller is greatly reduced. This method works for any number of SMs present in the converter and provides an integrated dynamic reconfiguration capability to enable or disable SMs during operation, without any additional consideration for the control-algorithm's implementation. Such a capability is not offered by classical MMC control methods using either PWM or nearest-level control strategies. Higher stability, robustness and larger bandwidth of the proposed method are first demonstrated through real-time simulation. The auto-interleaving of the PWM carriers and the capacitor-voltage balancing, provide fast responses and adequate accuracy. Experimental results are provided using a 600 V/3 kW/18 cells single-phase MMC demonstrator confirming the simulation results, and the advantages of this SM control strategy.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2018.5096
Loading

Related content

content/journals/10.1049/iet-pel.2018.5096
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address