Bidirectional soft-switching dc–dc converter for battery energy storage systems
- Author(s): Andrei Blinov 1 ; Roman Kosenko 1 ; Andrii Chub 1 ; Dmitri Vinnikov 1
-
-
View affiliations
-
Affiliations:
1:
Department of Electrical Power Engineering and Mechatronics, Tallinn University of Technology , Ehitajate tee 5, Tallinn , Estonia
-
Affiliations:
1:
Department of Electrical Power Engineering and Mechatronics, Tallinn University of Technology , Ehitajate tee 5, Tallinn , Estonia
- Source:
Volume 11, Issue 12,
16
October
2018,
p.
2000 – 2009
DOI: 10.1049/iet-pel.2018.5054 , Print ISSN 1755-4535, Online ISSN 1755-4543
The study introduces a bidirectional dc–dc converter with current- and voltage-fed (VF) ports that features soft switching in both buck and boost operating modes. The converter can be used for integration of low-voltage DC sources, such as batteries into a dc bus of considerably higher voltage or a dc link of a grid side inverter. Zero current switching, assisted with the leakage inductance of the isolation transformer, can be achieved at the current-fed side along with zero voltage switching of the VF side, assisted by snubber or intrinsic capacitances of the transistors. Soft switching can be maintained over a wide range of voltage and power levels, regardless of the energy transfer direction. Converter operation is described and theoretical findings were verified with experimental results obtained by means of a 300 W prototype operating at a switching frequency of 100 kHz and designed for integration of a 24 V battery into 400 V dc bus. The converter proposed is compared in terms of efficiency to other competing soft-switching full-bridge topologies implemented with the same components.
Inspec keywords: power transistors; zero current switching; invertors; snubbers; zero voltage switching; power grids; battery storage plants; DC-DC power convertors
Other keywords: transistor snubber capacitance; leakage inductance; voltage 24 V; transistor intrinsic capacitance; frequency 100 kHz; boost operating mode; current-fed port; power 300 W; soft-switching full-bridge topologies; zero current switching; grid side inverter; voltage level; switching frequency; power level; battery energy storage systems; energy transfer direction; dc link; isolation transformer; dc bus; voltage-fed port; zero voltage switching; low-voltage DC sources; VF side; buck operating mode; bidirectional soft-switching dc-dc converter
Subjects: Power semiconductor devices; Other power stations and plants
References
-
-
1)
-
9. Mazumder, S. K., Burra, R. K., Acharya, K.: ‘A ripple-mitigating and energy-efficient fuel cell power-conditioning system’, IEEE Trans. Power Electron., 2007, 22, (4), pp. 1437–1452.
-
-
2)
-
12. Song, W., Lehman, B.: ‘Current-fed dual-bridge DC–DC converter’, IEEE Trans. Power Electron., 2007, 22, (2), pp. 461–469.
-
-
3)
-
44. Lindberg-Poulsen, K., Ouyang, Z., Sen, G., et al: ‘A new method for start-up of isolated boost converters using magnetic- and winding-integration’. 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conf. Exposition (APEC), Orlando, FL, 2012, pp. 340–345.
-
-
4)
-
1. Wichert, B.: ‘PV-diesel hybrid energy systems for remote area power generation – a review of current practice and future developments’, Renew. Sust. Energy Rev., 1997, 1, (3), pp. 209–228.
-
-
5)
-
56. Graovac, D., Purschel, M., Kiep, A.: ‘MOSFET power losses calculation using the data-sheet parameters’, Appl. Note, 2006, 1, pp. 1–23.
-
-
6)
-
43. Zhu, L., Wang, K., Lee, F. C., et al: ‘New start-up schemes for isolated full-bridge boost converters’, IEEE Trans. Power Electron., 2003, 18, (4), pp. 946–951.
-
-
7)
-
6. Lai, J. S., Nelson, D. J.: ‘Energy management power converters in hybrid electric and fuel cell vehicles’, Proc. IEEE, 2007, 95, (4), pp. 766–777.
-
-
8)
-
35. Chakraborty, D., Rathore, A. K., Breaz, E., et al: ‘Parasitics assisted soft-switching and naturally commutated current-fed bidirectional push-pull voltage doubler’. 2015 IEEE Industry Applications Society Annual Meeting, Addison, TX, 2015, pp. 1–8.
-
-
9)
-
13. Sun, X., Wu, X., Shen, Y., et al: ‘A current-fed isolated bidirectional DC–DC converter’, IEEE Trans. Power Electron., 2017, 32, (9), pp. 6882–6895.
-
-
10)
-
25. Jang, S.-J., Lee, T.-W., Lee, W.-C., et al: ‘Bi-directional dc–dc converter for fuel cell generation system’. 2004 IEEE 35th Annual Power Electronics Specialists Conf. (IEEE Cat. No.04CH37551), Aachen, Germany, 2004, vol. 6, pp. 4722–4728.
-
-
11)
-
19. Sree, K. R., Rathore, A. K.: ‘Analysis and design of impulse-commutated zero-current-switching single-inductor current-Fed three-phase push–pull converter’, IEEE Trans. Ind. Appl., 2017, 53, (2), pp. 1517–1526.
-
-
12)
-
38. Al-Naseem, O., Erickson, R. W., Carlin, P.: ‘Prediction of switching loss variations by averaged switch modeling’. APEC 2000. Fifteenth Annual IEEE Applied Power Electronics Conf. Exposition (Cat. No.00CH37058), New Orleans, LA, 2000, vol. 2000, pp. 242–248.
-
-
13)
-
8. Peng, F. Z., Li, H., Su, G.-J., et al: ‘A new ZVS bidirectional DC–DC converter for fuel cell and battery application’, IEEE Trans. Power Electron., 2004, 19, (1), pp. 54–65.
-
-
14)
-
16. Xuewei, P., Rathore, A. K.: ‘Comparison of bi-directional voltage-fed and current-fed dual active bridge isolated dc/dc converters low voltage high current applications’, Proc. ISIE'2014, Istanbul, 2014, pp. 2566–2571.
-
-
15)
-
34. Xuewei, P., Rathore, A. K.: ‘Novel bidirectional snubberless naturally clamped ZCS current-fed full-bridge voltage doubler: analysis, design, and experimental results’. 2013 IEEE Energy Conversion Congress and Exposition, Denver, CO, 2013, pp. 5518–5525.
-
-
16)
-
46. Nayanasiri, D. R., Foo, G. H. B., Vilathgamuwa, D. M., et al: ‘A switching control strategy for single- and dual-inductor current-fed push–pull converters’, IEEE Trans. Power Electron., 2015, 30, (7), pp. 3761–3771.
-
-
17)
-
45. Choi, W., Young, S., Son, D., et al: ‘Consideration to minimize power losses in synchronous rectification’. 8th Int. Conf. on Power Electronics – ECCE Asia, Jeju, 2011, pp. 2899–2905.
-
-
18)
-
51. Xuewei, P., Rathore, A. K.: ‘Current-fed soft-switching push–pull front-end converter-based bidirectional inverter for residential photovoltaic power system’, IEEE Trans. Power Electron., 2014, 29, (11), pp. 6041–6051.
-
-
19)
-
58. Zhou, K., Luo, X., Huang, L., et al: ‘An ultralow loss superjunction reverse blocking insulated-gate bipolar transistor with shorted-collector trench’, IEEE Electron Device Lett., 2016, 37, (11), pp. 1462–1465.
-
-
20)
-
15. Sha, D., You, F., Wang, X.: ‘A high-efficiency current-fed semi-dual-active bridge DC–DC converter for low input voltage applications’, IEEE Trans. Ind. Electron., 2016, 63, (4), pp. 2155–2164.
-
-
21)
-
52. Xuewei, P., Rathore, A. K.: ‘Novel interleaved bidirectional snubberless soft-switching current-fed full-bridge voltage doubler for fuel-cell vehicles’, IEEE Trans. Power Electron., 2013, 28, (12), pp. 5535–5546.
-
-
22)
-
53. Wen, H., Xiao, W.: ‘Bidirectional dual-active-bridge DC–DC converter with triple-phase-shift control’. 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conf. Exposition (APEC), Long Beach, CA, USA, 2013, pp. 1972–1978.
-
-
23)
-
40. Chen, D., Xu, L., Yao, L.: ‘DC voltage variation based autonomous control of DC microgrids’, IEEE Trans. Power Deliv., 2013, 28, (2), pp. 637–648.
-
-
24)
-
37. Chakraborty, D., Breaz, E., Rathore, A. K., et al: ‘Parasitics-assisted soft-switching and secondary modulated snubberless clamping current-Fed bidirectional voltage doubler for fuel cell vehicles’, IEEE Trans. Veh. Technol., 2017, 66, (2), pp. 1053–1062.
-
-
25)
-
63. Zhao, B., Song, Q., Liu, W., et al: ‘Overview of dual-active-bridge isolated bidirectional DC–DC converter for high-frequency-link power-conversion system’, IEEE Trans. Power Electron., 2014, 29, (8), pp. 4091–4106.
-
-
26)
-
57. Boos, P., Mels, A., Sque, S.: ‘A 30 V bidirectional power switch in a CMOS technology using standard gate oxide’. 2016 28th Int. Symp. on Power Semiconductor Devices and ICs (ISPSD), Prague, 2016, pp. 247–250.
-
-
27)
-
29. Zakis, J., Vinnikov, D., Kolosov, V., et al: ‘New active clamp circuit for current-fed galvanically isolated DC/DC converters’. 2013 Int. Conf.-Workshop Compatibility and Power Electronics, Ljubljana, 2013, pp. 353–358.
-
-
28)
-
24. Wang, K., Lin, C. Y., Zhu, L., et al: ‘Bi-directional DC to DC converters for fuel cell systems’. Power Electronics in Transportation (Cat. No.98TH8349), Dearborn, MI, 1998, pp. 47–51.
-
-
29)
-
30. Rathore, K., Mazumder, S. K.: ‘Novel zero-current switching current-fed half-bridge isolated Dc/Dc converter for fuel cell based applications’. 2010 IEEE Energy Conversion Congress and Exposition, Atlanta, GA, 2010, pp. 3523–3529.
-
-
30)
-
14. Wang, Z., Li, H.: ‘A soft switching three-phase current-fed bidirectional DC–DC converter with high efficiency over a wide input voltage range’, IEEE Trans. Power Electron., 2012, 27, (2), pp. 669–684.
-
-
31)
-
22. Yakushev, V., Meleshin, V., Fraidlin, S.: ‘Full-bridge isolated current fed converter with active clamp’. Fourteenth Annual Applied Power Electronics Conf. Exposition, APEC ‘99, Dallas, TX, 1999, vol. 1, pp. 560–566.
-
-
32)
-
47. Xuewei, P., Rathore, A. K., Prasanna, U. R.: ‘Novel soft-switching snubberless naturally clamped current-fed full-bridge front-end-converter-based bidirectional inverter for renewables, microgrid, and UPS applications’, IEEE Trans. Ind. Appl., 2014, 50, (6), pp. 4132–4141.
-
-
33)
-
10. Sullivan, C. R., Awerbuch, J. J., Latham, A. M.: ‘Decrease in photovoltaic power output from ripple: simple general calculation and the effect of partial shading’, IEEE Trans. Power Electron., 2013, 28, (2), pp. 740–747.
-
-
34)
-
54. Darcovich, K., Henquin, E.R., Kenney, B., et al: ‘Higher-capacity lithium ion battery chemistries for improved residential energy storage with micro-cogeneration’, Appl. Energy, 2013, 111, pp. 853–861.
-
-
35)
-
62. Morita, T., Yanagihara, M., Ishida, H., et al: ‘650 V 3.1 mΩcm2 GaN-based monolithic bidirectional switch using normally-off gate injection transistor’. 2007 IEEE Int. Electron Devices Meeting, Washington, DC, 2007, pp. 865–868.
-
-
36)
-
55. Uddin, K., Gough, R., Radcliffe, J., et al: ‘Techno-economic analysis of the viability of residential photovoltaic systems using lithium-ion batteries for energy storage in the United Kingdom’, Appl. Energy, 2017, 206, pp. 12–21.
-
-
37)
-
21. Watson, R., Lee, F. C.: ‘A soft-switched, full-bridge boost converter employing an active-clamp circuit’. PESC Record. 27th Annual IEEE Power Electronics Specialists Conf., Baveno, 1996, vol. 2, pp. 1948–1954.
-
-
38)
-
61. Ide, T., Shimizu, M., Shen, X. Q., et al: ‘Equivalent circuit model for a GaN gate injection transistor bidirectional switch’, IEEE Trans. Electron. Dev., 2012, 59, (10), pp. 2643–2649.
-
-
39)
-
3. Leadbetter, J., Swan, L.: ‘Battery storage system for residential electricity peak demand shaving’, Energy Build., 2012, 55, pp. 685–692.
-
-
40)
-
49. Zhang, Z., Guo, B., Wang, F. F., et al: ‘Methodology for wide band-gap device dynamic characterization’, IEEE Trans. Power Electron., 2017, 32, (12), pp. 9307–9318.
-
-
41)
-
27. Ahmed, O. A., Bleijs, J.: ‘Optimized active-clamp circuit design for an isolated full-bridge current-fed DC–DC converter’. 2011 4th Int. Conf. on Power Electronics Systems and Applications, Hong Kong, 2011, pp. 1–7.
-
-
42)
-
50. Prasana, U. R., Rathore, A. K.: ‘Extended range ZVS active-clamped current-fed full-bridge isolated DC/DC converter for fuel cell applications: analysis, design, and experimental results’, IEEE Trans. Ind. Electron., 2013, 60, (7), pp. 2661–2672.
-
-
43)
-
5. Williamson, S. S., Rathore, A. K., Musavi, F.: ‘Industrial electronics for electric transportation: current state-of-the-art and future challenges’, IEEE Trans. Ind. Electron., 2015, 62, (5), pp. 3021–3032.
-
-
44)
-
20. Modepalli, K., Mohammadpour, A., Li, T., et al: ‘Three-phase current-fed isolated DC–DC converter with zero-current switching’, IEEE Trans. Ind. Appl., 2017, 53, (1), pp. 242–250.
-
-
45)
-
31. Rathore, K., Prasanna, P. U.: ‘Analysis, design, and experimental results of novel snubberless bidirectional naturally clamped ZCS/ZVS current-fed half-bridge DC/DC converter for fuel cell vehicles’, IEEE Trans. Ind. Electron., 2013, 60, (10), pp. 4482–4491.
-
-
46)
-
23. Ahmed, O. A., Bleijs, J. A. M.: ‘High-efficiency DC–DC converter for fuel cell applications: performance and dynamic modeling’. 2009 IEEE Energy Conversion Congress and Exposition, San Jose, CA, 2009, pp. 67–74.
-
-
47)
-
26. Mao, H., Abu-Qahouq, J., Luo, S., et al: ‘Zero-voltage-switching half-bridge DC–DC converter with modified PWM control method’, IEEE Trans. Power Electron., 2004, 19, (4), pp. 947–958.
-
-
48)
-
48. Oyarbide, E., Bernal, C., Molina-Gaudó, P.: ‘New current measurement procedure using a conventional Rogowski transducer for the analysis of switching transients in transistors’, IEEE Trans. Power Electron., 2017, 32, (4), pp. 2490–2492.
-
-
49)
-
33. Xuewei, P., Rathore, A. K.: ‘Naturally clamped soft-switching current-fed three-phase bidirectional DC/DC converter’, IEEE Trans. Ind. Electron., 2015, 62, (5), pp. 3316–3324.
-
-
50)
-
59. Mori, S., Aketa, M., Sakaguchi, T., et al: ‘Demonstration of 3 kV 4H-SiC reverse blocking MOSFET’. 2016 28th Int. Symp. on Power Semiconductor Devices and ICs (ISPSD), Prague, 2016, pp. 271–274.
-
-
51)
-
28. Wu, T. F., Chen, Y. C., Yang, J. G., et al: ‘Isolated bidirectional full-bridge DC–DC converter with a flyback snubber’, IEEE Trans. Power Electron., 2010, 25, (7), pp. 1915–1922.
-
-
52)
-
17. Chakraborty, S., Chattopadhyay, S.: ‘Analysis and comparison of voltage-source and current-source asymmetric dual-active half-bridge converters’. 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, 2014, pp. 2072–2079.
-
-
53)
-
41. Nymand, M., Andersen, M. A. E.: ‘High-efficiency isolated boost DC–DC converter for high-power low-voltage fuel-cell applications’, IEEE Trans. Ind. Electron., 2010, 57, (2), pp. 505–514.
-
-
54)
-
32. Xuewei, P., Rathore, A. K.: ‘Novel bidirectional snubberless naturally commutated soft-switching current-fed full-bridge isolated DC/DC converter for fuel cell vehicles’, IEEE Trans. Ind. Electron., 2014, 61, (5), pp. 2307–2315.
-
-
55)
-
39. Schonbergerschonberger, J., Duke, R., Round, S. D.: ‘DC-bus signaling: a distributed control strategy for a hybrid renewable nanogrid’, IEEE Trans. Ind. Electron., 2006, 53, (5), pp. 1453–1460.
-
-
56)
-
18. Yu, S., Nguyen, M. Q., Choi, W.: ‘A novel soft-switching battery charge/discharge converter with the zero voltage discharge function’, IEEE Trans. Power Electron., 2016, 31, (7), pp. 5067–5078.
-
-
57)
-
11. Abeywardana, D. B. W., Hredzak, B., Agelidis, V. G.: ‘Single-phase grid-connected LiFePO4 battery–supercapacitor hybrid energy storage system with interleaved boost inverter’, IEEE Trans. Power Electron., 2015, 30, (10), pp. 5591–5604.
-
-
58)
-
2. Shaahid, S. M., Elhadidy, M. A.: ‘Economic analysis of hybrid photovoltaic–diesel–battery power systems for residential loads in hot regions – a step to clean future’, Renew. Sust. Energy Rev., 2008, 12, (2), pp. 488–503.
-
-
59)
-
60. Chowdhury, S., Hitchcock, C. W., Stum, Z., et al: ‘Operating principles, design considerations, and experimental characteristics of high-voltage 4H-SiC bidirectional IGBTs’, IEEE Trans. Electron. Dev., 2017, 64, (3), pp. 888–896.
-
-
60)
-
42. Ouyang, Z., Sen, G., Thomsen, O. C., et al: ‘Analysis and design of fully integrated planar magnetics for primary–parallel isolated boost converter’, IEEE Trans. Ind. Electron., 2013, 60, (2), pp. 494–508.
-
-
61)
-
4. Restrepo, C., Salazar, A., Schweizer, H., et al: ‘Residential battery storage: is the timing right?’, IEEE Electrification Mag., 2015, 3, (3), pp. 14–21.
-
-
62)
-
36. Bal, S., Rathore, A. K., Srinivasan, D.: ‘Naturally commutated current-fed three-phase bidirectional soft-switching DC–DC converter with 120° modulation technique’, IEEE Trans. Ind. Appl., 2016, 52, (5), pp. 4354–4364.
-
-
63)
-
7. Meghdad, T., Jafar, M., Bijan, A.: ‘High step-up current-fed ZVS dual half-bridge DC–DC converter for high-voltage applications’, IET Power Electron., 2015, 8, (2), pp. 309–318.
-
-
1)

Related content
