access icon free Carrier-based PWM control strategy for three-level indirect matrix converter

This article proposes a new carrier-based pulse width modulation (CBPWM) strategy for the control of TLIMC. The duty ratios of the rectifier stage and inverter stage are calculated by the SVPWM method. A carrier is constructed and combined with duty ratios to obtain modulation waves, which are regular and determined by the input voltage and output reference voltage. Then, the modulation waves are compared with the same carrier to obtain pulse signals. The pulse signals are used to produce driving signals of power switches through logic operation. The rectifier stage and inverter stage are controlled by the driving signals to obtain three-phase symmetrical sinusoidal input and output waveforms. The proposed method is identical in output to the original SVPWM method. Finally, simulation and experimental results are provided to verify the feasibility and validity of the proposed method.

Inspec keywords: matrix convertors; power conversion harmonics; pulse width modulation; power factor; switching convertors; PWM power convertors; PWM invertors

Other keywords: duty ratios; carrier-based pulse width modulation strategy; inverter stage; pulse signals; three-level indirect matrix converter; input voltage; modulation waves; driving signals; three-phase symmetrical sinusoidal input; rectifier stage; carrier-based PWM control strategy; original SVPWM method

Subjects: Control of electric power systems; Power convertors and power supplies to apparatus; AC-AC power convertors; Power electronics, supply and supervisory circuits

References

    1. 1)
      • 9. Tsang, K.M., Chan, W.L.: ‘Direct AC-AC grid interface converter for ocean wave energy system’, Energy Conver. Manag., 2015, 92, (92), pp. 302311.
    2. 2)
      • 25. Dan, H., Peng, T., Su, M., et al: ‘Implementation of phase disposition modulation method for the three-level diode-clamped matrix converter’, IET Power Electron., 2015, 8, (11), pp. 21072114.
    3. 3)
      • 3. Hu, F., Wu, X., Wang, Q., et al: ‘Research on matrix converter simplified modulation algorithm and commutation method’, Electr. Drive, 2016, 46, (9), pp. 2125.
    4. 4)
      • 5. Xia, C., Zhao, J., Yan, Y., et al: ‘A novel direct torque and flux control method of matrix converter-fed PMSM drives’, IEEE Trans. Power Electron., 2014, 29, (10), pp. 54175430.
    5. 5)
      • 7. Cárdenas, R., Peňa, R., Wheeler, P., et al: ‘Control of the reactive power supplied by a WECS based on an induction generator fed by a matrix converter’, IEEE Trans. Ind. Electron., 2009, 56, (2), pp. 429438.
    6. 6)
      • 16. Feng, L.I., Wang, G., Liu, R.: ‘A low-frequency control scheme for modular multilevel matrix converter’, Autom. Electr. Power Syst., 2016, 40, (2), pp. 127133.
    7. 7)
      • 18. Meng, Y.L., Wheeler, P., Klumpner, C.: ‘Space-vector modulated multilevel matrix converter’, IEEE Trans. Ind. Electron., 2010, 57, (10), pp. 33853394.
    8. 8)
      • 23. Zhang, J., Su, M., Xiong, W., et al: ‘Carrier-based modulation strategy of indirect matrix converters for common-mode voltage reduction’. IEEE Future Energy Electronics Conf. and Ecce Asia, Kaohsiung, Taiwan, 2017, pp. 534538.
    9. 9)
      • 15. Wang, J., Wu, B., Xu, D., et al: ‘Phase-shifting-transformer-fed multimodular matrix converter operated by a new modulation strategy’, IEEE Trans. Ind. Electron., 2013, 60, (10), pp. 43294338.
    10. 10)
      • 26. Deng, W., Yang, X., Zhu, J., et al: ‘Space vector modulation strategy of two-stage matrix converter with 18 switches and its simulation study’, Proc. CSEE, 2005, 25, (15), pp. 8490.
    11. 11)
      • 17. Krug, H.P., Kume, T., Swamy, M.: ‘Neutral-point clamped three-level general purpose inverter – features, benefits and applications’. Power Electronics Specialists Conf., Pesc 04, Aachen, Germany, 2004, vol. 1, pp. 323328.
    12. 12)
      • 19. Klumpner, C., Meng, L., Wheeler, P.: ‘A new three-level sparse indirect matrix converter’, IEEE Conf. on IEEE Industrial Electronics – IECON 2006, Paris, France, 2006, pp. 19021907.
    13. 13)
      • 12. Kumar, C.A., Sivarani, T.S., Jawhar, S.J.: ‘A novel space vector technique for the direct three-level matrix converter’, Res. J. Appl. Sci. Eng. Technol., 2014, 8, (16), pp. 18381854.
    14. 14)
      • 27. He, G., He, F., Wang, F., et al: ‘Study and realization of a three-level SVPWM fast algorithm based on coordinate components’, Trans. China Electrotech. Soc., 2013, 28, (1), pp. 209214.
    15. 15)
      • 8. Arevalo, S.L., Zanchetta, P., Wheeler, P.W., et al: ‘Control and implementation of a matrix-converter-based AC ground power-supply unit for aircraft servicing’, IEEE Trans. Ind. Electron., 2010, 57, (6), pp. 20762084.
    16. 16)
      • 10. Qu, J., Xu, L., Wang, L., et al: ‘The modulation of common mode voltage suppression for a three-level matrix converter’. IEEE Int. Conf. on Aircraft Utility Systems, Beijing, People's Republic of China, 2016, pp. 533538.
    17. 17)
      • 14. Shi, Y., Yang, X., He, Q., et al: ‘Research on a novel capacitor clamped multilevel matrix converter’, IEEE Trans. Power Electron., 2005, 20, (5), pp. 10551065.
    18. 18)
      • 4. Helle, L, Larsen K, B, Jorgensen A, H, et al: ‘Evaluation of modulation schemes for three-phase to three-phase matrix converters’, IEEE Trans. Ind. Electron., 2004, 51, (1), pp. 158171.
    19. 19)
      • 11. Raju, S., Srivatchan, L.N., Chandrasekaran, V., et al: ‘Constant pulse width modulation strategy for direct three-level matrix converter’. IEEE Int. Conf. on Power Electronics, Drives and Energy Systems, Bengaluru, India, 2013, pp. 15.
    20. 20)
      • 21. Nguyen, T.D., Phan, D.Q., Nguyen, V.C., et al: ‘Carrier-based PWM modulation for indirect matrix converter fed open-end winding load’. 2016 IEEE Region 10 Conf. – TENCON 2016, Singapore, Singapore, 2016, pp. 32983303.
    21. 21)
      • 20. Lijuan, L.I., Zhu, J., Liu, H.: ‘Topology and control strategy of three-level matrix converter’, Electr. Power Autom. Equip., 2008, 28, (3), pp. 6367.
    22. 22)
      • 2. Guan, Q., Wheeler, P.W., Guan, Q., et al: ‘Common-mode voltage reduction for matrix converters using all valid switch states’, IEEE Trans. Power Electron., 2016, 31, (12), pp. 82478259.
    23. 23)
      • 6. Karaman, E., Farasat, M., Trzynadlowski, A.M.: ‘Indirect matrix converters as generator–grid interfaces for wind energy systems’, IEEE J. Emerging Sel. Top. Power Electron., 2014, 2, (4), pp. 776783.
    24. 24)
      • 13. Sun, Y., Xiong, W., Su, M., et al: ‘Topology and modulation for a new multilevel diode-clamped matrix converter’, IEEE Trans. Power Electron., 2014, 29, (12), pp. 63526360.
    25. 25)
      • 22. Nguyen, T.D., Lee, H.H.: ‘Multilevel indirect matrix converter with carrier-based pulse width modulation’. Conf. of the IEEE Industrial Electronics Society – IECON 2014, Dallas, TX, USA, 2014, pp. 33183323.
    26. 26)
      • 1. Xia, Y., Qiao, M., Zhang, X., et al: ‘The analysis and research of indirect space vector over-modulation strategy for matrix converters’, Trans. China Electron. Tech. Soc., 2015, 30, (21), pp. 2430.
    27. 27)
      • 24. Wang, J., Gao, Y., Jiang, W.: ‘A carrier-based implementation of virtual space vector modulation for neutral point clamped three-level inverter’, IEEE Trans. Ind. Electron., 2017, 64, (12), pp. 95809586.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2018.5030
Loading

Related content

content/journals/10.1049/iet-pel.2018.5030
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading