access icon free Linear ADRC direct current control of grid-connected inverter with LCL filter for both active damping and grid voltage induced current distortion suppression

The conversion and utilisation of renewable energy generations often require grid-connected inverters. When applying LCL filter to remove power electronic chopping harmonics, the power quality faces two issues of resonance damping and grid voltage induced current distortion. Conventionally, two separate control algorithms are required to treat the two issues, requiring an additional current sensor, increasing control complexity and limiting performance. This study demonstrates that linear active disturbance rejection control (ADRC) is able to treat both resonance damping and grid voltage induced current distortion as overall disturbance at the same time through a single structure, while achieving higher power quality for dynamic, steady-state, small and large parameter setup, as well as parameter variations, as validated by experimental results. In principle, the ADRC can be configured with or without knowledge of the system model. This study also reveals that it is the measurement noise tolerance that makes the two configurations different in practice. By using model information in ADRC algorithm, the required bandwidth can be reduced, offering more tolerance to measurement noise. Moreover, the ADRC controller has only two parameters to tune for ‘fast’ or ‘slow’, which makes it easy for implementation.

Inspec keywords: machine control; electric current control; feedback; control system synthesis; power grids; filters; damping; invertors

Other keywords: grid voltage; resonance damping; limiting performance; renewable energy generations; required bandwidth; applying LCL filter; separate control algorithms; ADRC algorithm; power electronic chopping harmonics; current distortion suppression; control complexity; grid-connected inverters; ADRC controller; active damping; additional current sensor; higher power quality; linear active disturbance rejection control; large parameter setup

Subjects: Control system analysis and synthesis methods; Power convertors and power supplies to apparatus; Control of electric power systems; Current control

References

    1. 1)
      • 19. Xu, J., Xie, S., Tang, T.: ‘Improved control strategy with grid-voltage feedforward for LCL-filter-based inverter connected to weak grid’, IET Power Electron., 2014, 7, (10), pp. 26602671.
    2. 2)
      • 17. Park, S.Y., Chen, C.L., Lai, J.S., et al: ‘Admittance compensation in current loop control for a grid-tie LCL fuel cell inverter’, IEEE Trans. Power Electron., 2008, 23, (4), pp. 17161723.
    3. 3)
      • 23. Jingqing, H.: ‘From PID to active disturbance rejection control’, IEEE Trans. Ind. Electron., 2009, 56, (3), pp. 900906.
    4. 4)
      • 3. Pena-Alzola, R., Liserre, M., Blaabjerg, F., et al: ‘A self-commissioning notch filter for active damping in a three-phase LCL -filter-based grid-tie converter’, IEEE Trans. Power Electron., 2014, 29, (12), pp. 67546761.
    5. 5)
      • 10. Ghoshal, A., John, V.: ‘Active damping of LCL filter at low switching to resonance frequency ratio’, IET Power Electron., 2015, 8, (4), pp. 574582.
    6. 6)
      • 28. Sira-Ramirez, H., Linares-Flores, J., Garcia-Rodriguez, C., et al: ‘On the control of the permanent magnet synchronous motor: an active disturbance rejection control approach’, IEEE Trans. Control Syst. Technol., 2014, 22, (5), pp. 20562063.
    7. 7)
      • 5. Busada, C.A., Gomez Jorge, S., Solsona, J.A.: ‘Full-state feedback equivalent controller for active damping in LCL filtered grid connected inverters using a reduced number of sensors’, IEEE Trans. Ind. Electron., 2015, 62, (10), pp. 59936002.
    8. 8)
      • 31. Wang, B., Xu, Y., Shen, Z., et al: ‘Current control of grid-connected inverter with LCL filter based on extended-state observer estimations using single sensor and achieving improved robust observation dynamics’, IEEE Trans. Ind. Electron., 2017, 64, (7), pp. 54285439.
    9. 9)
      • 6. Wang, X., Blaabjerg, F., Loh, P.C.: ‘Virtual RC damping of LCL-filtered voltage source converters with extended selective harmonic compensation’, IEEE Trans. Power Electron., 2015, 30, (9), pp. 47264737.
    10. 10)
      • 4. Malinowski, M., Bernet, S.: ‘A simple voltage sensorless active damping scheme for three-phase PWM converters with an LCL filter’, IEEE Trans. Ind. Electron., 2008, 55, (4), pp. 18761880.
    11. 11)
      • 8. Pena-Alzola, R., Liserre, M., Blaabjerg, F., et al: ‘Systematic design of the lead-lag network method for active damping in LCL-filter based three phase converters’, IEEE Trans. Ind. Inf., 2014, 10, (1), pp. 4352.
    12. 12)
      • 29. Castaneda, L.A., Luviano-Juarez, A., Chairez, I.: ‘Robust trajectory tracking of a delta robot through adaptive active disturbance rejection control’, IEEE Trans. Control Syst. Technol., 2015, 23, (4), pp. 13871398.
    13. 13)
      • 26. Su, Y.X., Zheng, C.H., Duan, B.Y.: ‘Automatic disturbances rejection controller for precise motion control of permanent-magnet synchronous motors’, IEEE Trans. Ind. Electron., 2005, 52, (3), pp. 814823.
    14. 14)
      • 21. Safamehr, H., Najafabadi, T.A., Salmasi, F.R.: ‘Enhanced control of grid-connected inverters with non-linear inductor in LCL filter’, IET Power Electron., 2016, 9, (10), pp. 21112120.
    15. 15)
      • 11. IEEE approved draft standard for interconnection and interoperability of distributed energy resources with associated electric power systems interfaces’, IEEE P1547/D7.3, December 2017, pp. 1148.
    16. 16)
      • 7. Wang, X., Blaabjerg, F., Loh, P.: ‘Grid-current-feedback active damping for LCL resonance in grid-connected voltage source converters’, IEEE Trans. Power Electron., 2016, 31, (1), pp. 213223.
    17. 17)
      • 14. Abeyasekera, T., Johnson, C.M., Atkinson, D.J., et al: ‘Suppression of line voltage related distortion in current controlled grid connected inverters’, IEEE Trans. Power Electron., 2005, 20, (6), pp. 13931401.
    18. 18)
      • 9. Xin, Z., Loh, P.C., Wang, X., et al: ‘Highly accurate derivatives for LCL-filtered grid converter with capacitor voltage active damping’, IEEE Trans. Power Electron., 2016, 31, (5), pp. 36123625.
    19. 19)
      • 12. Baochao Wang M.S., , Locment, F.: ‘Simple improved control of phase error compensation for low power operation of PV grid-connected inverter with LCL filter’, Eur. J. Electr. Eng., 2014, 17, (1–2), pp. 2745.
    20. 20)
      • 32. Zhiqiang, G.: ‘Scaling and bandwidth-parameterization based controller tuning’. in, Proc. 2003 American Control Conf., 2003.
    21. 21)
      • 16. Xuehua, W., Xinbo, R., Shangwei, L., et al: ‘Full feedforward of grid voltage for grid-connected inverter with LCL filter to suppress current distortion due to grid voltage harmonics’, IEEE Trans. Power Electron., 2010, 25, (12), pp. 31193127.
    22. 22)
      • 13. Hamid, M.I., Jusoh, A.: ‘Reduction of waveform distortion in grid-injection current from single-phase utility interactive PV-inverter’, Energy Convers. Manage., 2014, 85, pp. 212226.
    23. 23)
      • 25. Wenchao, X., Wenyan, B., Sheng, Y., et al: ‘ADRC with adaptive extended state observer and its application to air-fuel ratio control in gasoline engines’, IEEE Trans. Ind. Electron., 2015, 62, (9), pp. 58475857.
    24. 24)
      • 15. Harnefors, L.: ‘Implementation of resonant controllers and filters in fixed-point arithmetic’, IEEE Trans. Ind. Electron., 2009, 56, (4), pp. 12731281.
    25. 25)
      • 1. Ipakchi, A., Albuyeh, F.: ‘Grid of the future’, IEEE Power Energy Mag., 2009, 7, (2), pp. 5262.
    26. 26)
      • 20. Teodorescu, R., Blaabjerg, F., Liserre, M.: ‘Proportional-resonant controllers. a new breed of controllers suitable for grid-connected voltage-source converters’, 2004.
    27. 27)
      • 27. Pu, Z., Yuan, R., Yi, J., et al: ‘A class of adaptive extended state observers for nonlinear disturbed systems’, IEEE Trans. Ind. Electron., 2015, 62, (9), pp. 58585869.
    28. 28)
      • 30. Liu, F., Li, Y., Cao, Y., et al: ‘A two-layer active disturbance rejection controller design for load frequency control of interconnected power system’, IEEE Trans. Power Syst., 2015, 31, (99), pp. 12.
    29. 29)
      • 18. Xu, J., Xie, S., Tang, T.: ‘Evaluations of current control in weak grid case for grid-connected LCL-filtered inverter’, IET Power Electron., 2013, 6, (2), pp. 227234.
    30. 30)
      • 22. Xu, J., Tang, T., Xie, S.: ‘Research on low-order current harmonics rejections for grid-connected LCL-filtered inverters’, IET Power Electron., 2014, 7, (5), pp. 12271234.
    31. 31)
      • 2. Dannehl, J., Liserre, M., Fuchs, F.W.: ‘Filter-based active damping of voltage source converters with LCL filter’, IEEE Trans. Ind. Electron., 2011, 58, (8), pp. 36233633.
    32. 32)
      • 24. Xiaoyong, C., Yongli, L., Weiya, Z., et al: ‘Active disturbance rejection control for a flywheel energy storage system’, IEEE Trans. Ind. Electron., 2015, 62, (2), pp. 9911001.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0787
Loading

Related content

content/journals/10.1049/iet-pel.2017.0787
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading