access icon free Unified modelling and dynamical analysis of current-mode controlled single-inductor dual-output switching converter with ramp compensation

Current-mode controlled single-inductor dual-output (SIDO) switching converters have three borders in wide-range parameter variations. Based on the slopes of inductor current during the power switches being turn-on or turn-off, a unified discrete-mapping model of current-mode controlled SIDO switching converters with ramp compensation is established in this study, which can be applied to three basic SIDO switching converters, i.e. buck type, boost type, and buck-boost type. Only six parameters appear in this model after non-dimensional analysis, from which the dynamical behaviours of SIDO switching converters in continuous conduction mode (CCM) and discontinuous conduction mode (DCM) can be effectively illustrated. The effect of ramp compensation is analysed in detail. By utilising the proposed unified model, two transition conditions and boundary equations of the converter are derived, where its operation state transits from stable period-1 to instability and operation mode shifts from CCM to DCM. The operation region with varied circuit parameters can be estimated and divided by the parameter-space map, which is significant for the design of circuit parameters and stability. Finally, taking a current-mode controlled SIDO boost converter as an example, its experimental results are carried out to validate the theoretic analysis and the non-dimensional unified model.

Inspec keywords: circuit stability; switches; switching convertors; inductors; compensation

Other keywords: boundary equation; CCM; nondimensional unified model; DCM; continuous conduction mode; discontinuous conduction mode; parameter-space map; unified discrete-mapping model; SIDO switching converter; ramp compensation effect; current-mode controlled single-inductor dual-output switching converter; stability; current-mode controlled SIDO switching converters

Subjects: Power electronics, supply and supervisory circuits; Inductors and transformers; Relays and switches

References

    1. 1)
      • 18. Aroudi, A.E.: ‘A new approach for accurate prediction of subharmonic oscillation in switching regulators-part II: case studies’, IEEE Trans. Power Electron., 2017, 32, (7), pp. 58355849.
    2. 2)
      • 5. Wang, B.F., Kanamarlapudi, V.R.K., Xian, L., et al: ‘Model predictive voltage control for single-inductor multiple-output dc–dc converter with reduced cross regulation’, IEEE Trans. Ind. Electron., 2016, 63, (7), pp. 41874197.
    3. 3)
      • 7. Mandal, K., Abusorrah, A., Al-Hindawi, M.M., et al: ‘Dynamical analysis of single-inductor dual-output dc–dc converters’. IEEE Int. Symp. on Circuits and Systems, Beijing, China, May 2013, pp. 27552758.
    4. 4)
      • 25. Tse, C.K., Lai, Y.M., Lu, H.H.C.: ‘Hopf bifurcation and chaos in a free running current-controlled Cuk switching regulator’, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., 2000, 47, (4), pp. 448457.
    5. 5)
      • 4. Kwon, D., Rincón-Mora, G.A.: ‘Single-inductor–multiple-output switching dc–dc converters’, IEEE Trans. Circuits Syst. II, Express Briefs, 2009, 56, (8), pp. 614618.
    6. 6)
      • 11. Mitchell, D.M.: ‘An analytical investigation of current injected control for constant-frequency switching regulators’, IEEE Trans. Power Electron., 1986, 1, (3), pp. 167174.
    7. 7)
      • 6. Huang, C.S., Chen, D., Chen, C.J., et al: ‘Mix-voltage conversion for single-inductor dual-output buck converter’, IEEE Trans. Power Electron., 2010, 25, (8), pp. 21062114.
    8. 8)
      • 12. Ki, W.H.: ‘Analysis of subharmonic oscillation of fixed frequency current-programming switch mode power converters’, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., 1998, 45, (1), pp. 104108.
    9. 9)
      • 15. Middlebrook, R.D.: ‘Topics in multiple-loop regulators and current-mode programming’, IEEE Trans. Power Electron., 1987, 2, (2), pp. 109124.
    10. 10)
      • 2. Wai, R.J., Jheng, K.H.: ‘High efficiency single-input multiple-output dc–dc converter’, IEEE Trans. Power Electron., 2013, 28, (2), pp. 886898.
    11. 11)
      • 9. Zhou, S.H., Zhou, G.H., Wang, Y., et al: ‘Bifurcation analysis and operation region estimation of current-mode-controlled SIDO boost converter’, IET Power Electron., 2017, 10, (7), pp. 846853.
    12. 12)
      • 8. Moreno-Font, V., El-Aroudi, A., Calvente, J., et al: ‘Dynamics and stability issues of a single-inductor dual-switching DC–DC converter’, IEEE Trans. Circuits Syst. I, Reg. Papers, 2010, 57, (2), pp. 415426.
    13. 13)
      • 21. Manohar, S.K., Hunt, L.R., Balsara, P.T., et al: ‘Minimum phase wide output range digitally controlled SIDO boost converter’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2015, 62, (9), pp. 23512360.
    14. 14)
      • 17. Aroudi, A.E.: ‘A new approach for accurate prediction of subharmonic oscillation in switching regulators-part I: mathematical derivations’, IEEE Trans. Power Electron., 2017, 32, (7), pp. 56515651.
    15. 15)
      • 13. Hariman, G., Richardson, C.: ‘Control method solves low duty-cycle dilemmas’, Power Electron. Technol., 2006, 32, (9), pp. 2230.
    16. 16)
      • 16. Zhou, G.H., Xu, J.P., Bao, B.C., et al: ‘Symmetrical dynamics of peak current-mode and valley current-mode controlled switching DC–DC converters with ramp compensation’, Chin. Phys. B, 2010, 19, (6), p. 060508.
    17. 17)
      • 22. Huang, C.S., Chen, D., Wu, T.H., et al: ‘Mix-voltage power conversion for single-inductor dual-output (SIDO) boost converters and SIDO bipolar converters’. European Conf. on Power Electronics and Applications, Birmingham, UK, August–September 2011, pp. 110.
    18. 18)
      • 19. Bao, B.C., Zhou, G.H., Xu, J.P., et al: ‘Unified classification of operation state regions for switching converters with ramp compensation’, IEEE Trans. Power Electron., 2011, 26, (7), pp. 19681975.
    19. 19)
      • 23. Rodriguez, E., El-Aroudi, A., Guinjoan, F., et al: ‘A ripple-based design oriented approach for predicting fast-scale instability in dc–dc switching power supplies’, IEEE Trans. Circuits Syst. I, Reg. Pap., 2012, 59, (1), pp. 215227.
    20. 20)
      • 14. Zhou, G.H., Xu, J.P., Wang, J.P.: ‘Constant-frequency peak-ripple-based control of buck converter in CCM: review, unification and duality’, IEEE Trans. Industrial Electron., 2014, 61, (3), pp. 12801291.
    21. 21)
      • 24. Wang, F.Q., Ma, X.K.: ‘Effects of switching frequency and leakage inductance on slow-scale stability in a voltage controlled flyback converter’, Chin. Phys. B, 2013, 22, (12), p. 120504.
    22. 22)
      • 3. Wang, Y., Xu, J.P., Zhou, G.H.: ‘A cross regulation analysis for single-inductor dual-output CCM buck converters’, J. Power Electron., 2016, 16, (5), pp. 18021812.
    23. 23)
      • 10. Benadero, L., Moreno-Font, V., Aroudi, A.E.: ‘Unfolding nonsmooth bifurcation patterns in a 1-D PWL map as a model of a single-inductor two-output dc–dc switching converter’, Int. J. Bifurcation Chaos, 2013, 23, (3), p. 1330008.
    24. 24)
      • 20. Zhou, S.H., Zhou, G.H., Xu, D., et al: ‘Voltage-mode variable frequency control for single-inductor dual-output buck converter with fast transient response’. IEEE 3rd Int. Future Energy Electronics Conf. and ECCE Asia (IFEEC-ECCE Asia), Kaohsiung, Taiwan, June 2017, pp. 13391344.
    25. 25)
      • 1. Zheng, Y.Q., Ho, M., Guo, J.P., et al: ‘A single-inductor multiple-output auto-buck-boost dc–dc converter with autophase allocation’, IEEE Trans. Power Electron., 2016, 31, (3), pp. 22962313.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0776
Loading

Related content

content/journals/10.1049/iet-pel.2017.0776
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading