Improved series active power filter with fundamental and harmonic magnetic flux hybrid compensation

Improved series active power filter with fundamental and harmonic magnetic flux hybrid compensation

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The filtering performance of series hybrid active power filter (SHAPF) based on fundamental magnetic flux compensation positively correlates with the magnetising impedance of the transformer. However, excessive magnetising impedance will decrease reliability while increasing capacity and costs of the whole system. In order to reduce the magnetising impedance while ensuring the same filtering performance of SHAPF, an improved series active power filter (ISAPF) with fundamental and harmonics magnetic flux hybrid control is presented here. The equivalent impedances to fundamental and harmonics in ISAPF are firstly analysed to explain the principle of ‘harmonic isolation’. Then the range of compensation coefficients is investigated in detail based on the complete control block diagram and the open-loop function of ISAPF. Moreover, stability conditions of an overall system with non-linear loads are deduced. Finally, a set of single-phase prototype with two kinds of special transformer has been constructed; the related experiments results showed that ISAPF can ensure the filtering performance while applying a transformer with smaller capacity, thus resulting in the reduction in capacity and the costs while increasing the reliability.


    1. 1)
      • 1. Akagi, H., Watanabe, E.H., Aredes, M.: ‘Instantaneous power theory and applications to power conditioning’ (Wiley-IEEE Press, Hoboken, New Jersey, 2007).
    2. 2)
      • 2. Bollen, M.H.J.: ‘Understanding power quality problems voltage sags and interruptions’ (Wiley-IEEE Press, Hoboken, New Jersey, 2000).
    3. 3)
      • 3. Hingorani, N.G., Gyugyi, L.: ‘Understanding FACTS: concepts and technology of flexible AC transmission systems’ (Publicis MCD, Munich, Germany, 2000).
    4. 4)
      • 4. Singh, B., Al-Haddad, K., Chandra, A.: ‘A review of active filters for power quality improvement’, IEEE Trans. Ind. Electron., 1999, 46, (5), pp. 960971.
    5. 5)
      • 5. Peng, F.Z.: ‘Application issues of active power filters’, IEEE Ind. Appl. Mag., 1998, 4, (5), pp. 2130.
    6. 6)
      • 6. Tang, Y., Loh, P.C., Wang, P., et al: ‘Generalized design of high performance shunt active power filter with output LCL filter’, IEEE Trans. Ind. Electron., 2012, 59, (3), pp. 14431452.
    7. 7)
      • 7. Li, Y., Liu, Q., Hu, S., et al: ‘A virtual impedance comprehensive control strategy for the controllably inductive power filtering system’, IEEE Trans. Power Electron., 2017, 32, (2), pp. 920926.
    8. 8)
      • 8. Li, Y., Peng, Y., Liu, F., et al: ‘A controllably inductive filtering method with transformer-integrated linear reactor for power quality improvement of shipboard power system’, IEEE Trans. Power Deliv., 2017, 32, (4), pp. 18171827.
    9. 9)
      • 9. Kanjiya, P., Khadkikar, V., Zeineldin, H.H.: ‘Optimal control of shunt active power filter to meet IEEE Std. 519 current harmonic constraints under nonideal supply condition’, IEEE Trans. Ind. Electron., 2015, 62, (2), pp. 724734.
    10. 10)
      • 10. Liu, Q., Deng, Y., He, X.: ‘Boost-type inverter-less shunt active power filter for VAR and harmonic compensation’, IET Power Electron., 2013, 6, (3), pp. 535542.
    11. 11)
      • 11. Zhu, H., Shu, Z., Gao, F., et al: ‘Five-level diode-clamped active power filter using voltage space vector-based indirect current and predictive harmonic control’, IET Power Electron., 2014, 7, (3), pp. 713723.
    12. 12)
      • 12. Luo, Z., Su, M., Sun, Y., et al: ‘Analysis and control of a reduced switch hybrid active power filter’, IET Power Electron., 2016, 9, (7), pp. 14161425.
    13. 13)
      • 13. Xiao, Z., Deng, X., Yuan, R., et al: ‘Shunt active power filter with enhanced dynamic performance using novel control strategy’, IET Power Electron., 2014, 7, (12), pp. 31693181.
    14. 14)
      • 14. Shuai, Z., Luo, A., Tu, C., et al: ‘New control method of injection-type hybrid active power filter’, IET Power Electron., 2011, 4, (9), pp. 10511057.
    15. 15)
      • 15. Khadkikar, V., Chandra, A.: ‘UPQC-S: a novel concept of simultaneous voltage sag/swell and load reactive power compensations utilizing series inverter of UPQC’, IEEE Trans. Power Electron., 2011, 26, (9), pp. 24142425.
    16. 16)
      • 16. Peng, F.Z., Akagi, H., Nabae, A.: ‘Compensation characteristics of the combined system of shunt passive and series active filters’, IEEE Trans. Ind. Appl., 1993, 29, (1), pp. 144152.
    17. 17)
      • 17. Dixon, J.W., Venegas, G., Moran, L.A.: ‘A series active power filter based on a sinusoidal current-controlled voltage-source inverter’, IEEE Trans. Ind. Electron., 1997, 44, (5), pp. 612620.
    18. 18)
      • 18. Li, D., Chen, Q., Jia, Z., et al: ‘A novel active power filter with fundamental magnetic flux compensation’, IEEE Trans. Power Deliv., 2004, 19, (2), pp. 799805.
    19. 19)
      • 19. Jianben, L., Shaojun, D., Qiaofu, C., et al: ‘Modelling and industrial application of series hybrid active power filter’, IET Power Electron., 2013, 6, (8), pp. 17071714.
    20. 20)
      • 20. Tian, J., Chen, Q., Xie, B.: ‘Series hybrid active power filter based on controllable harmonic impedance’, IET Power Electron., 2012, 5, (1), pp. 142148.
    21. 21)
      • 21. Krause, P.C., Wasynczuk, O., Sudhoff, S.D.: ‘Analysis of electric machinery and drive systems’ (Wiley-IEEE Press, 2013).
    22. 22)
      • 22. Fitzgerald, A.E., Kingsley, C.Jr., Stephen, D.U., et al: ‘Electric machinery’ (McGraw-Hill Higher Education, New York, USA, 2003).
    23. 23)
      • 23. Li, D., Yang, K., Zhu, Z.Q., et al: ‘A novel series power quality controller with reduced passive power filter’, IEEE Trans. Ind. Electron., 2017, 64, (1), pp. 773784.
    24. 24)
      • 24. Buso, S., Malesani, L., Mattavelli, P.: ‘Comparison of current control techniques for active filter applications’, IEEE Trans. Ind. Electron., 1998, 45, (2), pp. 722729.
    25. 25)
      • 25. Sul, S.-K.: ‘Control of electric machine drive systems’ (John Wiley & Sons, Hoboken, New Jersey, 2011).
    26. 26)
      • 26. Golnaraghi, M.F., Kuo, B.C.: ‘Automatic control systems’ (John Wiley & Sons. Inc., Hoboken, New Jersey, 2009, 9th edn.).

Related content

This is a required field
Please enter a valid email address