Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Improved dynamic performance of dual active bridge dc–dc converters using MPC scheme

Dynamic performance is a key focus of power conversion systems for facing with input and output step-change and disturbance cases. To improve dynamic characteristic of dual-active-bridge dc–dc converters, this study proposes a non-linear model predictive control (MPC) scheme with phase-shift ratio compensation to face with the following extreme conditions: start-up or step change of load resistance, input voltage, and the desired output voltage. Furthermore, in view of the idea of direct current control, MPC scheme using fewer sensors is proposed, which greatly increases the flexibility of control system and reduce the cost. Compared to traditional voltage closed-loop (TVCL) control and model-based phase shift (MPS) control, the salient features of the proposed MPC can be summarised as excellent dynamic performance, weak parameter sensitiveness, in addition, it is also available and effective when the load current sensor is not used. Finally, three control schemes consisting of TVCL, MPS, and the proposed MPC scheme are compared and tested in a scale-down experimental prototype. The above excellent performance of the proposed MPC scheme has been verified by experimental results.

References

    1. 1)
      • 14. Bai, H., Nie, Z., Mi, C.C.: ‘Experimental comparison of traditional phase-shift, dual-phase-shift, and model-based control of isolated bidirectional DC–DC converters’, IEEE Trans. Power Electron., 2010, 25, (6), pp. 14441449.
    2. 2)
      • 20. Oggier, G.G., Ordonez, M., Galvez, J.M., et al: ‘Fast transient boundary control and steady-state operation of the dual active bridge converter using the natural switching surface’, IEEE Trans. Power Electron., 2014, 29, (2), pp. 946957.
    3. 3)
      • 17. Cheng, K.H., Hsu, C.F., Lin, C.M., et al: ‘Fuzzy-neural sliding-mode control for DC–DC converters using asymmetric Gaussian membership functions’, IEEE Trans. Ind. Electron., 2007, 54, (3), pp. 15281536.
    4. 4)
      • 16. Caliskan, V.A., Verghese, O.C., Stankovic, A.M.: ‘Multifrequency averaging of DC/DC converters’, IEEE Trans. Power Electron., 1999, 14, (1), pp. 124133.
    5. 5)
      • 10. Hui, L., Fang Zheng, P., Lawler, J.: ‘Modeling, simulation, and experimental verification of soft-switched bi-directional DC–DC converters’. 16th Annual IEEE APEC, Anaheim, CA, USA, March 2001, pp. 736742.
    6. 6)
      • 5. Inoue, S., Akagi, H.: ‘A bidirectional isolated DC–DC converter as a core circuit of the next-generation medium-voltage power conversion system’, IEEE Trans. Power Electron., 2007, 22, (2), pp. 535542.
    7. 7)
      • 19. Rivetta, C.H., Emadi, A., Williamson, G.A., et al: ‘Analysis and control of a buck DC–DC converter operating with constant power load in sea and undersea vehicles’, IEEE Trans. Ind. Appl., 2006, 42, (2), pp. 559572.
    8. 8)
      • 21. Song, W., Deng, Z., Wang, S., et al: ‘A simple model predictive power control strategy for single-phase PWM converters with modulation function optimization’, IEEE Trans. Power Electron., 2016, 31, (7), pp. 52795289.
    9. 9)
      • 1. Doncker, R.W.A.A.D., Divan, D.M., Kheraluwala, M.H.: ‘A three-phase soft-switched high-power-density DC/DC converter for high-power applications’, IEEE Trans. Ind. Appl., 1991, 27, (1), pp. 6373.
    10. 10)
      • 3. Mi, C., Bai, H., Wang, C., et al: ‘Operation, design and control of dual H-bridge-based isolated bidirectional DC–DC converter’, IET Power Electron., 2008, 1, (4), pp. 507517.
    11. 11)
      • 4. Tan, N.M.L., Abe, T., Akagi, H.: ‘Design and performance of a bidirectional isolated DC–DC converter for a battery energy storage system’, IEEE Trans. Power Electron., 2012, 27, (3), pp. 12371248.
    12. 12)
      • 6. Steiner, M., Reinold, H.: ‘Medium frequency topology in railway applications’. 2007 European Conf. Power Electronics and Applications, Aalborg, Denmark, September 2007, pp. 110.
    13. 13)
      • 23. Vazquez, S., Leon, J.I., Franquelo, L.G., et al: ‘Model predictive control: a review of its applications in power electronics’, IEEE Ind. Electron. Mag., 2014, 8, (1), pp. 1631.
    14. 14)
      • 15. Qin, H., Kimball, J.W.: ‘Generalized average modeling of dual active bridge DC–DC converter’, IEEE Trans. Power Electron., 2012, 27, (4), pp. 20782084.
    15. 15)
      • 27. Saeed, J., Hasan, A.: ‘Unit prediction horizon binary search-based model predictive control of full-bridge DC–DC converter’, IEEE Trans. Control Syst. Technol., 2017, PP, (99), pp. 112, doi: 10.1109/TCST.2017.2670530.
    16. 16)
      • 7. Bai, H., Mi, C.: ‘Eliminate reactive power and increase system efficiency of isolated bidirectional dual-active-bridge DC–DC converters using novel dual-phase-shift control’, IEEE Trans. Power Electron., 2008, 23, (6), pp. 29052914.
    17. 17)
      • 9. Oggier, G., García, G.O., Oliva, A.R.: ‘Modulation strategy to operate the dual active bridge DC–DC converter under soft switching in the whole operating range’, IEEE Trans. Power Electron., 2011, 26, (4), pp. 12281236.
    18. 18)
      • 26. Xie, Y., Ghaemi, R., Sun, J., et al: ‘Model predictive control for a full bridge DC–DC converter’, IEEE Trans. Control Syst. Technol., 2012, 20, (1), pp. 164172.
    19. 19)
      • 12. Segaran, D., Holmes, D.G., McGrath, B.P.: ‘Enhanced load step response for a bidirectional DC–DC converter’, IEEE Trans. Power Electron., 2013, 28, (1), pp. 371379.
    20. 20)
      • 2. Zhao, B., Yu, Q., Sun, W.: ‘Extended-phase-shift control of isolated bidirectional DC–DC converter for power distribution in microgrid’, IEEE Trans. Power Electron., 2012, 27, (11), pp. 46674680.
    21. 21)
      • 13. Bai, H., Mi, C., Wang, C., et al: ‘The dynamic model and hybrid phase-shift control of a dual-active-bridge converter’. 34th Annual Conf. IEEE Industrial Electronics, Orlando, FL, USA, November 2008, pp. 28402845.
    22. 22)
      • 18. Siew-Chong, T., Lai, Y.M., Tse, C.K.: ‘A unified approach to the design of PWM-based sliding-mode voltage controllers for basic DC–DC converters in continuous conduction mode’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2006, 53, (8), pp. 18161827.
    23. 23)
      • 8. Oggier, G.G., García, G.O., Oliva, A.R.: ‘Switching control strategy to minimize dual active bridge converter losses’, IEEE Trans. Power Electron., 2009, 24, (7), pp. 18261838.
    24. 24)
      • 22. Zhang, Y., Yang, H.: ‘Two-vector-based model predictive torque control without weighting factors for induction motor drives’, IEEE Trans. Power Electron., 2016, 31, (2), pp. 13811390.
    25. 25)
      • 24. Serri, E., Ahmad, A.Z.: ‘Comparative study of short prediction MPC-KF with PI controller for DC–DC buck converter’. IEEE Int. Conf. Automatic Control and Intelligent Systems (I2CACIS), Selangor, Malaysia, October 2016, pp. 219222.
    26. 26)
      • 11. Demetriades, G.D., Nee, H.P.: ‘Dynamic modeling of the dual-active bridge topology for high-power applications’. IEEE Power Electronics Specialists Conf., Rhodes, Greece, June 2008, pp. 457464.
    27. 27)
      • 25. Xie, Y., Ghaemi, R., Sun, J., et al: ‘Implicit model predictive control of a full bridge DC–DC converter’, IEEE Trans. Power Electron., 2009, 24, (12), pp. 27042713.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0707
Loading

Related content

content/journals/10.1049/iet-pel.2017.0707
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address