access icon free Field-oriented control based on hysteresis band current controller for a permanent magnet synchronous motor driven by a direct matrix converter

The hysteresis band controller offers excellent dynamic performance. It has been widely researched and applied to the voltage source inverter and inverter fed drives, however it has not been investigated within the context of a matrix converter or a matrix converter based motor drive. In this study, both fixed-band and sinusoidal-band hysteresis current controllers are proposed and developed for a direct matrix converter. A comprehensive comparative evaluation of the two methods is then carried out. Both methods have fast dynamic performance and they inherently integrate the line modulation technique of the virtual rectifier stage into the overall modulation. Surge currents are prevented with the proposed scheme. The sinusoidal-band hysteresis controller demonstrates lower total harmonic distortion at the expense of higher average switching frequency, which is only significantly observable at very high sampling frequencies. The proposed controller is integrated with the field-oriented control to drive a matrix converter fed permanent magnet synchronous machine. The proposed methods are simple and incur a light computational burden, which advances the practical applications of matrix converters in AC motor drives. The simulation and experiment results demonstrate the effectiveness and feasibility of the proposed scheme.

Inspec keywords: electric current control; voltage-source convertors; hysteresis motor drives; machine vector control; rectifying circuits; permanent magnet motors; invertors; matrix convertors; harmonic distortion

Other keywords: total harmonic distortion; fixed-band hysteresis current controller; virtual rectifier stage; field-oriented control; direct matrix converter; voltage source inverter; AC motor drive; sinusoidal-band hysteresis current controller; permanent magnet synchronous motor; line modulation technique; inverter fed drive

Subjects: Current control; Synchronous machines; DC-AC power convertors (invertors); Drives; Control of electric power systems; AC-DC power convertors (rectifiers)

References

    1. 1)
      • 14. Pinto, S.F., Mendes, P.V., Fernando Silva, J.: ‘Modular matrix converter based solid state transformer for smart grids’, Electr. Power Syst. Res., 2016, 136, pp. 189200.
    2. 2)
      • 2. Raisemche, A., Boukhnifer, M., Larouci, C., et al: ‘Two active fault-tolerant control schemes of induction-motor drive in EV or HEV’, IEEE Trans. Veh. Technol., 2014, 63, (1), pp. 1929.
    3. 3)
      • 20. Vargas, R., Ammann, U., Hudoffsky, B., et al: ‘Predictive torque control of an induction machine fed by a matrix converter with reactive input power control’, IEEE Trans. Power Electron., 2010, 25, (6), pp. 14261438.
    4. 4)
      • 3. Guzinski, J., Abu-Rub, H.: ‘Speed sensorless induction motor drive with predictive current controller’, IEEE Trans. Ind. Electron., 2013, 60, (2), pp. 699709.
    5. 5)
      • 13. Wheeler, P.W., Rodriguez, J., Clare, J.C., et al: ‘Matrix converters: a technology review’, IEEE Trans. Ind. Electron., 2002, 49, (2), pp. 276288.
    6. 6)
      • 26. Gupta, R., Ghosh, A., Joshi, A.: ‘Multiband hysteresis modulation and switching characterization for sliding-mode-controlled cascaded multilevel inverter’, IEEE Trans. Ind. Electron., 2010, 57, (7), pp. 23442353.
    7. 7)
      • 7. Wu, F., Feng, F., Luo, L., et al: ‘Sampling period online adjusting-based hysteresis current control without band with constant switching frequency’, IEEE Trans. Ind. Electron., 2015, 62, (1), pp. 270277.
    8. 8)
      • 12. Dabour, S.M., Rashad, E.M.: ‘Analysis and implementation of space-vector-modulated three-phase matrix converter’, IET Power Electron., 2012, 5, (8), pp. 13741378.
    9. 9)
      • 16. Zhang, J., Dorrell, D.G., Li, L.: ‘Applications of the direct space vector modulation controlled matrix converter as the unified power flow controller’. 8th Int. Conf. Power Electronics, Machines and Drives, Glasgow, UK, April 2016, pp. 16.
    10. 10)
      • 23. Lee, K.B., Blaabjerg, F.: ‘Sensorless DTC-SVM for induction motor driven by a matrix converter using a parameter estimation strategy’, IEEE Trans. Ind. Electron., 2008, 55, (2), pp. 512521.
    11. 11)
      • 5. Peter, J., Marques, G.D., Ramchand, R.: ‘Current error space vector based constant switching frequency hysteresis controller for VSI fed induction motor drives’. 9th Int. Conf. Compatibility and Power Electron., Lisbon, Portugal, 2015, pp. 246251.
    12. 12)
      • 8. Wang, L., Lam, C.S., Wong, M.C., et al: ‘Non-linear adaptive hysteresis band pulse-width modulation control for hybrid active power filters to reduce switching loss’, IET Power Electron., 2015, 8, (11), pp. 21562167.
    13. 13)
      • 4. Wu, F., Zhang, L., Wu, Q.: ‘Simple unipolar maximum switching frequency limited hysteresis current control for grid-connected inverter’, IET Power Electron., 2013, 7, (4), pp. 933945.
    14. 14)
      • 11. Li, X., Su, M., Sun, Y., et al: ‘Modulation strategies based on mathematical construction method for matrix converter under unbalanced input voltages’, IET Power Electron., 2013, 6, (3), pp. 434445.
    15. 15)
      • 15. Zhang, J., Li, L., Malekjamshidi, Z., et al: ‘Predictive voltage control of direct matrix converter with reduced number of sensors for the renewable energy and microgrid applications’. IEEE Energy Conversion Congress and Exposition, Cincinnati, U.S., October 2017, pp. 33093315.
    16. 16)
      • 27. Abu-Rub, H., Iqbal, A., Guzinski, J.: ‘High performance control of AC drives with MATLAB/Simulink models’ (John Wiley & Sons, Noida, India, 2012).
    17. 17)
      • 9. Tripathi, A., Sen, P.C.: ‘Comparative analysis of fixed and sinusoidal band hysteresis current controllers for voltage source inverters’, IEEE Trans. Ind. Electron., 1992, 39, (1), pp. 6373.
    18. 18)
      • 22. Ortega, C., Arias, A., Caruana, C., et al: ‘Improved waveform quality in the direct torque control of matrix-converter-fed PMSM drives’, IEEE Trans. Ind. Electron., 2010, 57, (6), pp. 21012110.
    19. 19)
      • 6. Ramchand, R., Gopakumar, K., Patel, C., et al: ‘Online computation of hysteresis boundary for constant switching frequency current-error space-vector-based hysteresis controller for VSI-fed IM drives’, IEEE Trans. Power Electron., 2012, 27, (3), pp. 15211529.
    20. 20)
      • 10. Zhang, J., Li, L., Dorrell, D.G.: ‘Hysteresis band current controller based field-oriented control for an induction motor driven by a direct matrix converter’. 43rd Annual Conf. Ind. Electronics Society, Beijing, China, October 2017.
    21. 21)
      • 25. Lee, K.-B., Blaabjerg, F.: ‘An improved DTC-SVM method for sensorless matrix converter drives using an overmodulation strategy and a simple nonlinearity compensation’, IEEE Trans. Ind. Electron., 2007, 54, (6), pp. 31553166.
    22. 22)
      • 24. Zhang, J., Li, L., Dorrell, D.: ‘Direct torque control with a modified switching table for a direct matrix converter based AC motor drive system’. 20th Int. Conf. Electrical Machines and Systems, Sydney, Australia, August 2017.
    23. 23)
      • 1. Rodriguez, J., Kennel, R.M., Espinoza, J.R., et al: ‘High-performance control strategies for electrical drives: an experimental assessment’, IEEE Trans. Ind. Electron., 2012, 59, (2), pp. 812820.
    24. 24)
      • 21. Yan, Y., Zhao, J., Xia, C., et al: ‘Direct torque control of matrix converter-fed permanent magnet synchronous motor drives based on master and slave vectors’, IET Power Electron., 2014, 8, (2), pp. 288296.
    25. 25)
      • 18. Casadei, D., Serra, G., Tani, A.: ‘The use of matrix converters in direct torque control of induction machines’, IEEE Trans. Ind. Electron., 2001, 48, (6), pp. 10571064.
    26. 26)
      • 17. Bak, Y., Lee, E., Le, K.B.: ‘Indirect matrix converter for hybrid electric vehicle application with three-phase and single-phase outputs’, Energies, 2015, 8, (5), pp. 38493866.
    27. 27)
      • 19. Xia, C., Zhao, J., Yan, Y., et al: ‘A novel direct torque control of matrix converter-fed PMSM drives using duty cycle control for torque ripple reduction’, IEEE Trans. Ind. Electron., 2014, 61, (6), pp. 27002713.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0651
Loading

Related content

content/journals/10.1049/iet-pel.2017.0651
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading