access icon free Minimum resonant capacitor design of high-power LLC resonant converter for comprehensive efficiency improvement in battery charging application

Here, a minimum resonant capacitor design approach is proposed for the insulated-gate bipolar transistor (IGBT)-based high-power LLC resonant converter to improve its comprehensive efficiency in the electric vehicle (EV) battery charging application. The mathematical model of LLC resonant converter is established by using the first harmonic approximation (FHA) method. Then, the switching losses of IGBT-based high-power LLC resonant converter are analysed. Also, the relationship between predominant turn-off losses and turn-off current of power device IGBT is derived. To improve the comprehensive efficiency, the minimum resonant capacitor is proposed to reduce the turn-off losses, avoiding complex control or auxiliary circuit. Finally, the proposed approach is verified by a 2 kW LLC resonant converter prototype with 690 V DC input voltage and 75–150 V DC output voltage. Experimental results show the comprehensive efficiency of the prototype is up to 93.7%.

Inspec keywords: secondary cells; insulated gate bipolar transistors; switching convertors; resonant power convertors; power capacitors; electric vehicle charging; bipolar transistor circuits; battery powered vehicles; approximation theory

Other keywords: minimum resonant capacitor design approach; voltage 690.0 V; IGBT-based high-power LLC resonant converter; FHA method; LLC resonant converter prototype; insulated-gate bipolar transistor-based high-power LLC resonant converter; switching losses; voltage 75.0 V to 150.0 V; first harmonic approximation method; power 2.0 kW; EV battery charging application; comprehensive efficiency improvement; electric vehicle battery charging application; power device IGBT

Subjects: Secondary cells; Interpolation and function approximation (numerical analysis); Other power apparatus and electric machines; Automobile electronics and electrics; Power convertors and power supplies to apparatus

References

    1. 1)
      • 1. Deng, J., Mi, C.C., Ma, R., et al: ‘Design of LLC resonant converters based on operation-mode analysis for level two PHEV battery chargers’, IEEE/ASME Trans. Mech., 2015, 20, (4), pp. 15951606.
    2. 2)
      • 9. Hua, C., Fang, Y., Lin, C., et al: ‘LLC resonant converter for electric vehicle battery chargers’, IET Power Electron., 2016, 9, (12), pp. 23692376.
    3. 3)
      • 3. Hu, H., Fang, X., Chen, F., et al: ‘A modified high-efficiency LLC converter with two transformers for wide input-voltage range applications’, IEEE Trans. Power Electron., 2013, 28, (4), pp. 19461960.
    4. 4)
      • 17. Sun, W., Wu, H., Hu, H., et al: ‘Design considerations and experimental evaluation for LLC resonant converter with wide battery voltage range’. Proc. IEEE Conf. and Expo Transportation Electrification Asia-Pacific, Beijing, China, 2014.
    5. 5)
      • 16. Kundu, U., Yenduri, K., Sensarma, P.: ‘Accurate ZVS analysis for magnetic design and efficiency improvement of full-bridge LLC resonant converter’, IEEE Trans. Power Electron., 2017, 32, (3), pp. 17031706.
    6. 6)
      • 14. Kim, J.-W., Han, J.-K., Lai, J.-S.: ‘APWM adapted half-bridge LLC converter with voltage doubler rectifier for improving light load efficiency’, Electronics Letters, 2017, 53, (5), pp. 339341.
    7. 7)
      • 4. Yang, B., Lee, F.C., Zhang, A.J., et al: ‘LLC resonant converter for front end DC/DC conversion’. Proc. IEEE Applied Power Electronics Conf. and Exposition, Dallas, TX, USA, 2013, pp. 11081112.
    8. 8)
      • 8. Zhang, J., Hurley, W.G., Wölfle, W.H.: ‘Gapped transformer design methodology and implementation for LLC resonant converters’, IEEE Trans. Ind. Appl., 2016, 52, (1), pp. 342350.
    9. 9)
      • 23. Matsushita, A., Tai, H., Yasuoka, I., et al: ‘Inverter circuit with the regenerative passive snubber’. Proc. Power Conversion Conf., Nagoya, Japan, 2007.
    10. 10)
      • 11. Pan, H., He, C., Ajmal, F., et al: ‘Pulse-width modulation control strategy for high efficiency LLC resonant converter with light load applications’, IET Power Electron., 2014, 7, (11), pp. 28872894.
    11. 11)
      • 24. Fang, D., Hu, H., Chen, F., et al: ‘Efficiency-oriented optimal design of the LLC resonant converter based on peak gain placement’, IEEE Trans. Power Electron., 2013, 28, (5), pp. 22852296.
    12. 12)
      • 12. Feng, W., Lee, F.C., Mattavelli, P.: ‘Optimal trajectory control of burst mode for LLC resonant converter’, IEEE Trans. Power Electron., 2012, 28, (1), pp. 457466.
    13. 13)
      • 25. MOSFET (IXFN36N100) datasheet. 2001. Available at http://www.ixys.com/ProductPortfolio/PowerDevices.aspx.
    14. 14)
      • 19. IGBT MM40GTU120B datasheet. 2015. Available at http://www.macmicst.com/upLoad/down/month_1601/MM40GTU120B.
    15. 15)
      • 6. Musavi, F., Craciun, M., Gautam, D.S., et al: ‘An LLC resonant DC–DC converter for wide output voltage range battery charging applications’, IEEE Trans. Power Electron., 2013, 28, (12), pp. 54375445.
    16. 16)
      • 10. Chen, H., Wu, X.: ‘Analysis on the influence of the secondary parasitic capacitance to ZVS transient in LLC resonant converter’. Proc. IEEE Energy Conversion Congress and Exposition, Pittsburgh, PA, USA, 2014, pp. 47554760.
    17. 17)
      • 26. Yang, C.-H., Liang, T.-J., Chen, K.-H., et al: ‘Loss analysis of half-bridge LLC resonant converter’. 2013 1st Int. Future Energy Electronics Conf. (IFEEC), Tainan, Taiwan, 2013, pp. 155160.
    18. 18)
      • 22. Kim, D., Moon, S., Yeon, C.: ‘High-efficiency LLC resonant converter with high voltage gain using an auxiliary LC resonant circuit’, IEEE Trans. Power Electron., 2016, 31, (10), pp. 69016909.
    19. 19)
      • 13. Fei, C., Lee, F.C., Li, Q.: ‘Light load efficiency improvement for high frequency LLC converters with simplified optimal trajectory control (SOTC)’. 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, Canada, 20–24 September 2015.
    20. 20)
      • 18. Musavi, F., Craciun, M., Gautam, D.S., et al: ‘Control strategies for wide output voltage range LLC resonant DC–DC converters in battery chargers’, IEEE Trans. Veh. Technol., 2017, 63, (3), pp. 11171125.
    21. 21)
      • 15. Huang, W., Lee, S., Chen, C.: ‘Light-load efficiency improvement strategy for LLC resonant converter utilizing a step-gap transformer’. Proc. 2014 Int. Power Electronics Conf., Hiroshima, Japan, 2014, pp. 17341737.
    22. 22)
      • 20. Rectifier diode MM60F060PC datasheet. 2010. Available at http://www.macmicst.com /upLoad/down/month_1601/MM60F060PC.
    23. 23)
      • 5. Khaligh, A., Dusmez, S.: ‘Comprehensive topological analysis of conductive and inductive charging solutions for PHEV’, IEEE Trans. Veh. Technol., 2012, 61, (8), pp. 34753489.
    24. 24)
      • 21. Costa, V.S., Perdigão, M.S., Mendes, A.S., et al: ‘Evaluation of a variable-inductor-controlled LLC resonant converter for battery charging applications’. Proc. 42nd Annual Conf. of the IEEE Industrial Electronics Society, Florence, Italy, 2016, pp. 56335638.
    25. 25)
      • 2. Deng, J., Li, S., Hu, S., et al: ‘Design Methodology of LLC Resonant Converters for Electric Vehicle Battery Chargers’, IEEE Trans. Veh. Technol., 2014, 63, (4), pp. 15811592.
    26. 26)
      • 7. Musavi, F., Eberle, W.: ‘Overview of wireless power transfer technologies for electric vehicle battery charging’, IET Power Electron., 2014, 7, (1), pp. 6066.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0649
Loading

Related content

content/journals/10.1049/iet-pel.2017.0649
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading