Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Global asymptotic stability assessment of three-phase inverters with saturation

Saturation is reported to have a significant influence on the stability of the inverter. In this study, a direct Lyapunov function method to analyse the stability of a three-phase inverter with saturation is presented. The overall model of the three-phase inverter is established and the order of the original model is reduced based on the singular perturbation theory. Then the global asymptotic stability assessments of inverters are transformed into linear matrix inequalities problems that are easy to be solved numerically. Through the analysis of this study, it can be proved that the three-phase inverter based on conventional proportional–integral modulation can achieve global stabilisation. The proportional coefficients of the voltage loop have the greatest influence on the stability of the three-phase inverter. Besides, the saturation also has an important effect on the stability of the inverter. The proposed method has some advantages compared with the small-signal analysis. It can quantify the stability degree of the inverter and explain some non-linear phenomena caused by saturation. Simulation developed in PSCAD demonstrates the effectiveness of this method and the results are compared with the real-time digital simulation results implemented in RT-LAB and hardware results.

References

    1. 1)
      • 25. Hu, T., Lin, Z.: ‘Composite quadratic Lyapunov functions for constrained control systems’. Proc. of the 41st IEEE Conf. on Decision and Control, Las Vegas, NV, USA, 2002, vol. 3, pp. 35003505.
    2. 2)
      • 21. Albea, C., Gordillo, F.: ‘Estimating the attraction domain for the boost inverter’, Asian J. Control, 2013, 15, (1), pp. 169176.
    3. 3)
      • 29. Wen, B., Boroyevich, D., Burgos, R., et al: ‘Analysis of D-Q small-signal impedance of grid-tied inverters’, IEEE Trans. Power Electron., 2015, 31, (1), pp. 675687.
    4. 4)
      • 2. Shen, G., Zhu, X., Zhang, J., et al: ‘A new feedback method for PR current control of LCL-filter-based grid-connected inverter’, IEEE Trans. Ind. Electron., 2010, 57, (6), pp. 20332041.
    5. 5)
      • 30. Paquette, A.D., Divan, D.M.: ‘Virtual impedance current limiting for inverters in microgrids with synchronous generators’, IEEE Trans. Ind. Appl., 2015, 51, (2), pp. 16301638.
    6. 6)
      • 9. Hu, T.: ‘A nonlinear-system approach to analysis and design of power-electronic converters with saturation and bilinear terms’, IEEE Trans. Power Electron., 2011, 26, (2), pp. 399410.
    7. 7)
      • 8. Kaura, V., Blasko, V.: ‘A new method to extend linearity of a sinusoidal PWM in the overmodulation region’, IEEE Trans. Ind. Appl., 1996, 32, (5), pp. 11151121.
    8. 8)
      • 18. Magne, P., Marx, D., Nahid-Mobarakeh, B., et al: ‘Large-signal stabilization of a DC-link supplying a constant power load using a virtual capacitor: impact on the domain of attraction’, IEEE Trans. Ind. Appl., 2012, 48, (3), pp. 878887.
    9. 9)
      • 5. Iyer, S.V., Belur, M.N., Chandorkar, M.C., et al: ‘A generalized computational method to determine stability of a multi-inverter microgrid’, IEEE Trans. Power Electron., 2010, 25, (9), pp. 24202432.
    10. 10)
      • 7. Mazumder, S.K., Acharya, K., et al: ‘Multiple Lyapunov function based reaching condition for orbital existence of switching power converters’, IEEE Trans. Power Electron., 2008, 23, (3), pp. 14491471.
    11. 11)
      • 22. Bian, Z., Xu, Z.: ‘Fault ride-through capability enhancement strategy for VSC-HVDC systems supplying for passive industrial installations’, IEEE Trans. Power Deliv., 2016, 31, (4), pp. 16731682.
    12. 12)
      • 6. Tidjani, F.S., Hamadi, A., Chandra, A., et al: ‘Optimization of standalone microgrid considering active damping technique and smart power management using fuzzy logic supervisor’, IEEE Trans. Smart Grid, 2017, 8, (1), pp. 475484.
    13. 13)
      • 14. Loh, P.C., Holmes, D.G.: ‘Analysis of multiloop control strategies for LC/CL/LCL-filtered voltage-source and current-source inverters’, IEEE Trans. Ind. Appl., 2005, 41, (2), pp. 644654.
    14. 14)
      • 27. Mukherjee, N., Strickland, D.: ‘Control of cascaded DC–DC converter-based hybrid battery energy storage systems – part II: Lyapunov approach’, IEEE Trans. Ind. Electron., 2015, 63, (5), pp. 30503059.
    15. 15)
      • 19. Kim, H.J., Kang, S.W., Seo, G.S., et al: ‘Large-signal stability analysis of DC power system with shunt active damper’, IEEE Trans. Ind. Electron., 2016, 63, (10), pp. 62706280.
    16. 16)
      • 20. Griffo, A., Wang, J.: ‘Large signal stability analysis of ‘more electric’ aircraft power systems with constant power loads’, IEEE Trans. Aerosp. Electron. Syst., 2012, 48, (1), pp. 477489.
    17. 17)
      • 10. Huang, M., Wong, S.C., Tse, C.K., et al: ‘Catastrophic bifurcation in three-phase voltage-source converters’, IEEE Trans. Circuits Syst. I, Regul.Pap., 2013, 60, (4), pp. 10621071.
    18. 18)
      • 1. Liserre, M., Blaabjerg, F., Hansen, S.: ‘Design and control of an LCL-filter-based three-phase active rectifier’, IEEE Trans. Ind. Appl., 2005, 41, (5), pp. 12811291.
    19. 19)
      • 23. Hu, T., Lin, Z.: ‘Control systems with actuator saturation: analysis and design’ (Birkhäuser Boston, USA, 2001).
    20. 20)
      • 15. Parvez Akter, M., Mekhilef, S., Mei Lin Tan, N., et al: ‘Modified model predictive control of a bidirectional AC–DC converter based on Lyapunov function for energy storage systems’, IEEE Trans. Ind. Electron., 2016, 63, (2), pp. 704715.
    21. 21)
      • 11. Loop, B.P., Sudhoff, S.D., Zak, S.H., et al: ‘Estimating regions of asymptotic stability of power electronics systems using genetic algorithms’, IEEE Trans. Control Syst. Technol., 2010, 18, (5), pp. 10111022.
    22. 22)
      • 16. Griffo, A., Wang, J., Howe, D.: ‘Large signal stability analysis of DC power systems with constant power loads’. IEEE Vehicle Power and Propulsion Conf., Harbin, 2008, pp. 16.
    23. 23)
      • 26. Boyd, S., El Ghaoui, L., Feron, E., et al: ‘Linear matrix inequalities in system and control theory, volume 15 of studies in applied mathematics’ (SIAM, Philadelphis, PA, 1994).
    24. 24)
      • 28. Chen, Z., Xu, C., Zheng, L., et al: ‘Properties and physical interpretation of the dynamic interactions between voltage source converters and grid: electrical oscillation and its stability control’, IET Power Electronics, 2017, 10, (8), pp. 894902.
    25. 25)
      • 24. Sauer, P.W., Lagesse, D.J., Ahmed-Zaid, S., et al: ‘Reduced order modeling of interconnected multimachine power systems using time-scale decomposition’, IEEE Power Eng. Rev., 1987, 7, (5), pp. 3939.
    26. 26)
      • 13. Mehrasa, M., Pouresmaeil, E., Zabihi, S., et al: ‘Dynamic model, control and stability analysis of MMC in HVDC transmission systems’, IEEE Trans. Power Deliv., 2017, 32, (3), pp. 14711482.
    27. 27)
      • 12. Kakimoto, N., Ohsawa, Y., Hayashi, M.: ‘Transient stability analysis of multimachine power system with field flux decays via Lyapunov's direct method’, IEEE Trans. Power Appar. Syst., 1980, PAS-99, (5), pp. 18191827.
    28. 28)
      • 3. Sun, J.: ‘Impedance-based stability criterion for grid-connected inverters’, IEEE Trans. Power Electron., 2011, 26, (11), pp. 30753078.
    29. 29)
      • 17. Marx, D., Magne, P., Nahid-Mobarakeh, B., et al: ‘Large signal stability analysis tools in DC power systems with constant power loads and variable power loads – a review’, IEEE Trans. Power Electron., 2012, 27, (4), pp. 17731787.
    30. 30)
      • 4. Liserre, M., Teodorescu, R., Blaabjerg, F., et al: ‘Stability of photovoltaic and wind turbine grid-connected inverters for a large set of grid impedance values’, IEEE Trans. Power Electron., 2006, 21, (1), pp. 263272.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0523
Loading

Related content

content/journals/10.1049/iet-pel.2017.0523
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address