Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free DC–DC buck converter solely powered by supercapacitors for efficiently powering the hand-held devices

In this study, a closed loop feed-forward direct current (DC)–DC converter has been designed which operates solely on two supercapacitor modules. This is an innovative new design where the challenge was to maintain the constant output voltage when the input voltage of the converter is decaying continuously as a function of time as long as the output load draws current. The second innovation is the selection of all the components that are required to design the regulated output DC–DC converter, even though the parameters like the supply voltages for the components have been falling continuously as a function of time since the supercapacitor modules are providing these supply voltages. The design is also robust enough to withstand certain fluctuations in the output current ranging between 200 and 950 mA and yet maintain a regulated output voltage. In this study, the authors have successfully demonstrated that one can design a DC–DC converter powered by supercapacitors to generate a constant voltage and desired output current while all the components required making that DC–DC converter remain operational although the input voltage of the supercapacitors is dropping constantly, due to the output drawing current. The operating frequency, i.e. the switching frequency ranges from 1.5 to 3.5 kHz.

References

    1. 1)
      • 4. Camara, M. B., Gualous, H., Gustin, F., et al: ‘DC/DC converter design for supercapacitor and battery power management in hybrid vehicle applications—polynomial control strategy’, IEEE Trans. Ind. Electron., 2010, 57, (2), pp. 587597.
    2. 2)
      • 32. Wu, Z. S., Parvez, K., Feng, X., et al: ‘Graphene-based in-plane micro-supercapacitors with high power and energy densities’, Nat. Commun., 2013, 4, DOI: 10.1038/ncomms3487, Available at https://www.nature.com/articles/ncomms3487, pp. 18.
    3. 3)
      • 18. Tsai, C. H., Chen, B. M., Li, H. L.: ‘Switching frequency stabilization techniques for adaptive on-time controlled buck converter with adaptive voltage positioning mechanism’, IEEE Trans. Power Electron., 2016, 31, (1), pp. 443451.
    4. 4)
      • 28. Cortés, J., Šviković, V., Alou, P., et al: ‘Accurate analysis of subharmonic oscillations of V2 and V2Ic controls applied to buck converter’, IEEE Trans. Power Electron., 2015, 30, (2), pp. 10051018.
    5. 5)
      • 22. Kazimierczuk, M. K., Edström, A. J.: ‘Open-loop peak voltage feedforward control of PWM buck converter’, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., 2000, 47, (5), pp. 740746.
    6. 6)
      • 13. Camara, M. B., Gualous, H., Gustin, F., et al: ‘Design and new control of DC/DC converters to share energy between supercapacitors and batteries in hybrid vehicles’, IEEE Trans. Veh. Technol., 2008, 57, (5), pp. 27212735.
    7. 7)
      • 8. Maxwell Technologies: ‘Datasheet K2 ultracapacitors – 2.85 V/3400 F’. Available at http://www.maxwell.com/images/documents/K2_2_85V_DS_3000619EN_3_.pdf.
    8. 8)
      • 14. Khare, E.: ‘Teenage girl invents world's fastest mobile phone battery charger’. Available at http://www.ibtimes.co.uk/eesha-khare-mobile-phone-charger-google-471247, 2013.
    9. 9)
      • 10. Merritt, R.: ‘Intel Haswell packs integrated voltage regulator’2013. Available at http://www.eetimes.com/doc_id=1263259, accessed 24 May 2017.
    10. 10)
      • 9. Mandal, S. K., Bhijwani, P. S., Mohanty, S. P., et al: ‘Intellbatt: towards smarter battery designs’. ACM/IEEE Design Automation Conf., Anaheim, CA, USA, 2008.
    11. 11)
      • 1. Jing, W., Lai, C. H., Wallace, H. S., et al: ‘Battery-supercapacitor hybrid energy storage system in standalone DC microgrids: a review’, IET Power Gener., 2017, 11, (4), pp. 461469.
    12. 12)
      • 26. Zhou, G., Xu, J., Wang, J.: ‘Constant-frequency peak-ripple-based control of buck converter in CCM: review, unification, and duality’, IEEE Trans. Ind. Electron., 2014, 61, (3), pp. 12801291.
    13. 13)
      • 5. Miller, J. M.: ‘Electrical and thermal performance of the carbon–carbon ultracapacitor under constant power conditions’. IEEE Vehicle Power and Propulsion Conf., Arlington, TX, USA, 2007.
    14. 14)
      • 24. Sha, J., Xu, D., Chen, Y., et al: ‘A peak-capacitor-current pulse-train-controlled buck converter with fast transient response and a wide load range’, IEEE Trans. Ind. Electron., 2010, 63, (3), pp. 15281538.
    15. 15)
      • 21. MAX038: ‘High-frequency waveform generator’. Available at https://www.maximintegrated.com/en/products/digital/clock-generation-distribution/silicon-crystaloscillators/MAX038.html, 2007.
    16. 16)
      • 25. Smithson, S. C., Williamson, S. S.: ‘A unified state-space model of constant-frequency current-mode controlled power converters in continuous conduction mode’, IEEE Trans. Ind. Electron., 2015, 62, (7), pp. 45144524.
    17. 17)
      • 15. Maxwell technologies: ‘Ultracapacitor flash memory application’. Available at http://www.maxwell.com/images/documents/Flash_Memory_Application%20Brief_3000690_EN_1.pdf.
    18. 18)
      • 11. Kougianos, E., Mohanty, S. P.: ‘A comparative study on gate leakage and performance of high-κ nano-CMOS logic gates’, Int. J. Electron., 2010, 97, (9), pp. 9851005.
    19. 19)
      • 30. Chattopadhyay, S., Das, S.: ‘A digital current-mode control technique for DC–DC converters’, IEEE Trans. Power Electron., 2006, 21, (6), pp. 17181726.
    20. 20)
      • 12. Maxwell Technologies, Inc.: Charging of ultracapacitors. Application Note, Document 1008981 Rev 1.
    21. 21)
      • 27. Xu, J., Qin, M.: ‘Multi-pulse train control technique for buck converter in discontinuous conduction mode’, IET Power Electron., 2010, 3, (3), pp. 391399.
    22. 22)
      • 19. Wu, S., Kobori, Y., Kobayashi, H: ‘Dynamic performance improvement of DC–DC buck converter by slope adjustable triangular wave generator’. 2014 Int. SoC Design Conf. (ISOCC), Jeju, South Korea, 2014.
    23. 23)
      • 29. Šviković, V., Cortes, J. J., Alou, P., et al: ‘Multiphase current controlled buck converter with energy recycling output impedance correction circuit (OICC)’, IEEE Trans. Power Electron., 2015, 30, (9), pp. 52075222.
    24. 24)
      • 16. Burke, A., Zhao, H: ‘Applications of supercapacitors in electric and hybrid vehicles’. 5th European Symp. on Supercapacitor and Hybrid Solutions (ESSCAP), Brasov, Romania, 2015.
    25. 25)
      • 17. Zheng, Y., Chen, H., Leung, K. N.: ‘A fast-response pseudo-PWM buck converter with PLL-based hysteresis control’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2012, 20, (7), pp. 11671174.
    26. 26)
      • 31. Meng, C., Maeng, J., John, S. W. M., et al: ‘Ultrasmall integrated 3D micro-supercapacitors solve energy storage for miniature devices’, Adv. Energy Mater., 2014, 4, (7), DOI: 10.1002/aenm.201301269.
    27. 27)
      • 3. Chen, J. J., Hsu, J. H., Hwang, Y. S., et al: ‘A DC–DC buck converter with load-regulation improvement using dual-path-feedback techniques’, Analog Integr. Circuits Signal Process., 2014, 79, (1), pp. 149159.
    28. 28)
      • 23. Cheng, K. Y., Yu, F., Lee, F. C., et al: ‘Digital enhanced V2-type constant on-time control using inductor current ramp estimation for a buck converter with low-ESR capacitors’, IEEE Trans. Power Electron., 2013, 28, (3), pp. 12411252.
    29. 29)
      • 7. Simjee, F. I., Chou, P. H: ‘Efficient charging of supercapacitors for extended lifetime of wireless sensor node’, IEEE Trans. Power Electron., 2008, 23, (3), pp. 15261536.
    30. 30)
      • 33. El-Kady, M. F., Kaner, R. B.: ‘Scalable fabrication of high-power grapheme micro-supercapacitors for flexible and on-chip energy storage’, Nat. Commun., 2013, 4, DOI: 10.1038/ncomms2446, pp. 19.
    31. 31)
      • 34. Kollimalla, S. K., Mishra, M.K., Narasamma, N. L.: ‘Design and analysis of novel control strategy for battery and supercapacitor storage system’, IEEE Trans. Sustain. Energy, 2014, 5, (4), pp. 11371144.
    32. 32)
      • 20. Yates, A.: ‘Discrete sawtooth oscillators. Alan Yates’ laboratory’. Available at http://www.vk2zay.net/article/196, 2008.
    33. 33)
      • 2. Hu, A. P., You, Y. W., Chen, F. Y. B., et al: ‘Wireless power supply for ICP devices with hybrid supercapacitor and battery storage’, IEEE J. Emerging Sel. Top. Power Electron., 2016, 4, (1), pp. 273279.
    34. 34)
      • 6. Rufer, A., Barrade, P: ‘A supercapacitor-based energy-storage system for elevators with soft commutated interface’, IEEE Trans. Ind. Appl., 2002, 38, (5), pp. 11511159.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0488
Loading

Related content

content/journals/10.1049/iet-pel.2017.0488
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address