access icon free Novel orthogonal signal generator for single phase PLL applications

Single-phase phase-locked loops (PLLs) are used in various types of power electronics applications, including voltage source inverters, pulse width modulation rectifiers and different types of grid-tied power converter utilities. The orthogonal signal generators (OSGs), used in single-phase PLLs, are generally based on various types of filters, and they need to operate robustly in relation to the grid voltage disturbances and frequency variations. In this study, a novel OSG is proposed based on a modified first-order all-pass filter, which enables the PLL phase detector to operate at different response speeds, tuned by means of a single parameter. The PLL is experimentally verified and compared with a number of conventional solutions. Tests include responses to phase angle disturbances, frequency steps, and PLL input voltage distortions. Results show that a novel OSG filter enables faster PLL responses when compared with several conventional OSG filters, all designed to have the same disturbance attenuation at double fundamental frequency.

Inspec keywords: invertors; signal generators; all-pass filters; phase locked loops; power electronics; voltage-source convertors; power grids; PWM rectifiers

Other keywords: voltage source inverters; OSG filter; orthogonal signal generator; modified first-order all-pass filter; power electronics applications; PLL phase detector; frequency variations; grid-tied power converter utilities; pulse width modulation rectifiers; single-phase phase-locked loops; grid voltage disturbances; single-phase PLL applications

Subjects: AC-DC power convertors (rectifiers); DC-AC power convertors (invertors); Signal generators

References

    1. 1)
      • 12. Rocabert, J., Luna, A., Blaabjerg, F., et al: ‘Control of power converters in ac microgrids’, IEEE Trans. Power Electron., 2012, 27, (11), pp. 47344749.
    2. 2)
      • 4. Karimi-Ghartemani, M.: ‘A unifying approach to single-phase synchronous reference frame PLLS’, IEEE Trans. Power Electron., 2013, 28, (10), pp. 45504556.
    3. 3)
      • 17. Golestan, S., Guerrero, J.M., Vidal, A., et al: ‘Small-signal modeling, stability analysis and design optimization of single-phase delay-based PLLs’, IEEE Trans. Power Electron., 2016, 31, (5), pp. 35173527.
    4. 4)
      • 1. Santos Filho, R.M., Seixas, P.F., Cortizo, P.C., et al: ‘Comparison of three single-phase PLL algorithms for ups applications’, IEEE Trans. Ind. Electron., 2008, 55, (8), pp. 29232932.
    5. 5)
      • 5. Zhong, Q.-C., Hornik, T.: ‘Control of power inverters in renewable energy and smart grid integration’ (John Wiley & Sons, 2012).
    6. 6)
      • 11. Golestan, S., Monfared, M., Freijedo, F.D., et al: ‘Design and tuning of a modified power-based PLL for single-phase grid-connected power conditioning systems’, IEEE Trans. Power Electron., 2012, 27, (8), pp. 36393650.
    7. 7)
      • 15. Sakamoto, S., Izumi, T., Yokoyama, T., et al: ‘A new method for digital PLL control using estimated quadrature two phase frequency detection’. Power Conversion Conf., Osaka, Japan, 2002.
    8. 8)
      • 13. Han, Y., Luo, M., Zhao, X., et al: ‘Comparative performance evaluation of orthogonal-signal-generators-based single-phase PLL algorithms—a survey’, IEEE Trans. Power Electron., 2016, 31, (5), pp. 39323944.
    9. 9)
      • 8. Golestan, S., Ramezani, M., Guerrero, J.M.: ‘An analysis of the PLLs with secondary control path’, IEEE Trans. Ind. Electron., 2014, 61, (9), pp. 48244828.
    10. 10)
      • 7. Golestan, S., Ramezani, M., Guerrero, J.M., et al: ‘Moving average filter based phase-locked loops: performance analysis and design guidelines’, IEEE Trans. Power Electron., 2014, 29, (6), pp. 27502763.
    11. 11)
      • 3. Jaalam, N., Rahim, N., Bakar, A., et al: ‘A comprehensive review of synchronization methods for grid-connected converters of renewable energy source’, Renew. Sustain. Energy Rev., 2016, 59, pp. 14711481.
    12. 12)
      • 20. Karimi-Ghartemani, M., Reza Iravani, M.: ‘A method for synchronization of power electronic converters in polluted and variable-frequency environment’, IEEE Trans. Power Syst., 2003, 19, (3), pp. 12631270.
    13. 13)
      • 9. Carugati, I., Donato, P., Maestri, S., et al: ‘Frequency adaptive PLL for polluted single-phase grids’, IEEE Trans. Power Electron., 2012, 27, (5), pp. 23962404.
    14. 14)
      • 18. Choi, J.-W., Kim, Y.-K., Kim, H.-G.: ‘Digital PLL control for single-phase photovoltaic system’, IEE Proc., Electr. Power Appl., 2006, 153, (1), pp. 4046.
    15. 15)
      • 16. Da Silva, S.A.O., Novochadlo, R., Modesto, R.A.: ‘Single-phase PLL structure using modified PQ theory for utility connected systems’. 2008 IEEE Power Electronics Specialists Conf., 2008.
    16. 16)
      • 2. Golestan, S., Monfared, M., Freijedo, F.D., et al: ‘Dynamics assessment of advanced single-phase PLL structures’, IEEE Trans. Ind. Electron., 2013, 60, (6), pp. 21672177.
    17. 17)
      • 19. Thacker, T., Ruxi, W., Dong, D., et al: ‘Phase-locked loops using state variable feedback for single-phase converter systems’. Proc. Applied Power Electronics Conf. and Exposition, 2009, pp. 864870.
    18. 18)
      • 10. Rolim, L.G.B., da Costa, D.R., Jr., Aredes, M.: ‘Analysis and software implementation of a robust synchronizing PLL circuit based on the PQ theory’, IEEE Trans. Ind. Electron., 2006, 53, (6), pp. 19191926.
    19. 19)
      • 6. González-Espín, F., Figueres, E., Garcerá, G.: ‘An adaptive synchronous-reference-frame phase-locked loop for power quality improvement in a polluted utility grid’, IEEE Trans. Ind. Electron., 2012, 59, (6), pp. 27182731.
    20. 20)
      • 14. Karimi-Ghartemani, M.: ‘Linear and pseudolinear enhanced phased-locked loop (EPLL) structures’, IEEE Trans. Ind. Electron., 2014, 61, (3), pp. 14641474.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0458
Loading

Related content

content/journals/10.1049/iet-pel.2017.0458
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading