Novel orthogonal signal generator for single phase PLL applications

Novel orthogonal signal generator for single phase PLL applications

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Single-phase phase-locked loops (PLLs) are used in various types of power electronics applications, including voltage source inverters, pulse width modulation rectifiers and different types of grid-tied power converter utilities. The orthogonal signal generators (OSGs), used in single-phase PLLs, are generally based on various types of filters, and they need to operate robustly in relation to the grid voltage disturbances and frequency variations. In this study, a novel OSG is proposed based on a modified first-order all-pass filter, which enables the PLL phase detector to operate at different response speeds, tuned by means of a single parameter. The PLL is experimentally verified and compared with a number of conventional solutions. Tests include responses to phase angle disturbances, frequency steps, and PLL input voltage distortions. Results show that a novel OSG filter enables faster PLL responses when compared with several conventional OSG filters, all designed to have the same disturbance attenuation at double fundamental frequency.


    1. 1)
      • 1. Santos Filho, R.M., Seixas, P.F., Cortizo, P.C., et al: ‘Comparison of three single-phase PLL algorithms for ups applications’, IEEE Trans. Ind. Electron., 2008, 55, (8), pp. 29232932.
    2. 2)
      • 2. Golestan, S., Monfared, M., Freijedo, F.D., et al: ‘Dynamics assessment of advanced single-phase PLL structures’, IEEE Trans. Ind. Electron., 2013, 60, (6), pp. 21672177.
    3. 3)
      • 3. Jaalam, N., Rahim, N., Bakar, A., et al: ‘A comprehensive review of synchronization methods for grid-connected converters of renewable energy source’, Renew. Sustain. Energy Rev., 2016, 59, pp. 14711481.
    4. 4)
      • 4. Karimi-Ghartemani, M.: ‘A unifying approach to single-phase synchronous reference frame PLLS’, IEEE Trans. Power Electron., 2013, 28, (10), pp. 45504556.
    5. 5)
      • 5. Zhong, Q.-C., Hornik, T.: ‘Control of power inverters in renewable energy and smart grid integration’ (John Wiley & Sons, 2012).
    6. 6)
      • 6. González-Espín, F., Figueres, E., Garcerá, G.: ‘An adaptive synchronous-reference-frame phase-locked loop for power quality improvement in a polluted utility grid’, IEEE Trans. Ind. Electron., 2012, 59, (6), pp. 27182731.
    7. 7)
      • 7. Golestan, S., Ramezani, M., Guerrero, J.M., et al: ‘Moving average filter based phase-locked loops: performance analysis and design guidelines’, IEEE Trans. Power Electron., 2014, 29, (6), pp. 27502763.
    8. 8)
      • 8. Golestan, S., Ramezani, M., Guerrero, J.M.: ‘An analysis of the PLLs with secondary control path’, IEEE Trans. Ind. Electron., 2014, 61, (9), pp. 48244828.
    9. 9)
      • 9. Carugati, I., Donato, P., Maestri, S., et al: ‘Frequency adaptive PLL for polluted single-phase grids’, IEEE Trans. Power Electron., 2012, 27, (5), pp. 23962404.
    10. 10)
      • 10. Rolim, L.G.B., da Costa, D.R., Jr., Aredes, M.: ‘Analysis and software implementation of a robust synchronizing PLL circuit based on the PQ theory’, IEEE Trans. Ind. Electron., 2006, 53, (6), pp. 19191926.
    11. 11)
      • 11. Golestan, S., Monfared, M., Freijedo, F.D., et al: ‘Design and tuning of a modified power-based PLL for single-phase grid-connected power conditioning systems’, IEEE Trans. Power Electron., 2012, 27, (8), pp. 36393650.
    12. 12)
      • 12. Rocabert, J., Luna, A., Blaabjerg, F., et al: ‘Control of power converters in ac microgrids’, IEEE Trans. Power Electron., 2012, 27, (11), pp. 47344749.
    13. 13)
      • 13. Han, Y., Luo, M., Zhao, X., et al: ‘Comparative performance evaluation of orthogonal-signal-generators-based single-phase PLL algorithms—a survey’, IEEE Trans. Power Electron., 2016, 31, (5), pp. 39323944.
    14. 14)
      • 14. Karimi-Ghartemani, M.: ‘Linear and pseudolinear enhanced phased-locked loop (EPLL) structures’, IEEE Trans. Ind. Electron., 2014, 61, (3), pp. 14641474.
    15. 15)
      • 15. Sakamoto, S., Izumi, T., Yokoyama, T., et al: ‘A new method for digital PLL control using estimated quadrature two phase frequency detection’. Power Conversion Conf., Osaka, Japan, 2002.
    16. 16)
      • 16. Da Silva, S.A.O., Novochadlo, R., Modesto, R.A.: ‘Single-phase PLL structure using modified PQ theory for utility connected systems’. 2008 IEEE Power Electronics Specialists Conf., 2008.
    17. 17)
      • 17. Golestan, S., Guerrero, J.M., Vidal, A., et al: ‘Small-signal modeling, stability analysis and design optimization of single-phase delay-based PLLs’, IEEE Trans. Power Electron., 2016, 31, (5), pp. 35173527.
    18. 18)
      • 18. Choi, J.-W., Kim, Y.-K., Kim, H.-G.: ‘Digital PLL control for single-phase photovoltaic system’, IEE Proc., Electr. Power Appl., 2006, 153, (1), pp. 4046.
    19. 19)
      • 19. Thacker, T., Ruxi, W., Dong, D., et al: ‘Phase-locked loops using state variable feedback for single-phase converter systems’. Proc. Applied Power Electronics Conf. and Exposition, 2009, pp. 864870.
    20. 20)
      • 20. Karimi-Ghartemani, M., Reza Iravani, M.: ‘A method for synchronization of power electronic converters in polluted and variable-frequency environment’, IEEE Trans. Power Syst., 2003, 19, (3), pp. 12631270.

Related content

This is a required field
Please enter a valid email address